
M
al

te
Lo

rb
ac

h
A

ut
om

at
ed

Re
co

gn
iti

on
of

Ro
de

nt
So

cia
lB

eh
av

io
r AUTOMATED RECOGNITION

OF RODENT SOCIAL
BEHAVIOR

Malte Lorbach





A U T O M AT E D R E C O G N I T I O N O F
R O D E N T S O C I A L B E H AV I O R

malte lorbach



Cover: The three Rs – Replacement, Reduction and Re�nement. De�ned
by W. Russell and R. Burch in 1959 under the title “The principles of hu-
mane experimental technique”, the three Rs are the most important ethical
guidelines for designing and conducting animal research. They encourage
the use of research methods that replace animal testing by alternative tech-
niques, reduce the number of animals, and minimize pain and su�ering.

Automated Recognition of Rodent Social Behavior
PhD thesis, Utrecht University, the Netherlands

© 2017 Malte Lorbach

isbn 978-90-393-6872-5
cover Malte Lorbach
print ProefschriftMaken || www.proefschriftmaken.nl



A U T O M AT E D R E C O G N I T I O N O F
R O D E N T S O C I A L B E H AV I O R

automatische herkenning van sociaal
gedrag van knaagdieren

(met een samenvatting in het Nederlands)

Proefschrift

ter verkrijging van de graad van doctor aan de
Universiteit Utrecht op gezag van de rector magni�cus,

prof.dr. G.J. van der Zwaan, ingevolge het besluit van het
college voor promoties in het openbaar te verdedigen op

woensdag 8 november 2017 des middags te 12.45 uur

door

malte thorben lorbach

geboren op 2 juni 1986
te Osterode am Harz, Duitsland



promotor Prof. dr. R. C. Veltkamp
copromotor Dr. ir. R. W. Poppe

This thesis was partly accomplished with �nancial support from the Euro-
pean Research Council under the European Union’s Seventh Framework
Programme, ERC grant agreement no. 317259.



Contents

1 Introduction 1
1.1 Research Context: PhenoRat 2
1.2 Scope of this Thesis 3
1.3 Contributions of this Thesis 4
1.4 Thesis Outline 6

2 Measuring Rodent Social Behavior: an Overview 7
2.1 Manual Measuring Methods 7

2.1.1 De�ning Behavior Categories 8
2.1.2 Manually Annotating Behavior 9
2.1.3 Analyzing Annotated Behavior 11

2.2 Automatically Annotating Behavior 12
2.2.1 Observation 12
2.2.2 Annotation by Classi�cation 20
2.2.3 End-To-End Recognition 27

2.3 Conclusion 28

3 Rodent Social Behavior Datasets 29
3.1 Our Young Rats Dataset 29

3.1.1 Behavior Classes 31
3.1.2 Tracking 31
3.1.3 Experiment Protocol & Animals 31

3.2 Our RatSI Dataset 32
3.2.1 Behavior Classes 32
3.2.2 Tracking 33
3.2.3 Experiment Protocol & Animals 34

3.3 Public Mouse Datasets 34
3.3.1 CRIM13 35
3.3.2 MBADA 36

3.4 Conclusion 37

4 Analysis of Rodent Social Behavior in RatSI and CRIM13 39
4.1 Composition of Rodent Social Behavior 40

4.1.1 Occurrence Frequencies of Interactions 40
4.1.2 Temporal Structure 42

v



vi contents

4.2 Manual Annotations and Inter-Annotator Agree-
ment 46
4.2.1 Experiment 46
4.2.2 Results 47
4.2.3 Conclusion 52

4.3 Feature Representation 53
4.3.1 Trajectory-related Interactions 54
4.3.2 Contact-related Interactions 59

4.4 Conclusion 63

5 Tracking Quality & Feature Complexity 65
5.1 Eliminating Systematic Tracking Errors in YR 65
5.2 Extracting Features from the Dataset Versions 67
5.3 Classi�cation Experiments 68

5.3.1 Classifying Interactions from Video Frames 69
5.3.2 Measuring the Classi�cation Accuracy 69

5.4 Results 70
5.4.1 E�ect of Tracking Errors 70
5.4.2 E�ect of Feature Set 74

5.5 Cross-Quality Experiment 74
5.6 Discussion 75

6 Variations in Rodent Social Behavior 77
6.1 Classi�cation with Behavioral Variations 78
6.2 Cross-Dataset Experiments 80

6.2.1 Unifying Features Across Animals 81
6.2.2 Measuring Cross-dataset Performance 82

6.3 Results 84
6.4 Discussion 86

7 Interactive Annotation 89
7.1 Interactive Behavior Annotation Framework 90

7.1.1 Sample Selection 91
7.1.2 Labeling 91
7.1.3 Learning 92

7.2 Active Learning for Rat Social Behavior 93
7.2.1 Evaluating the Learning Performance 93
7.2.2 Querying the Oracle 94
7.2.3 Linear Classi�cation Model 95
7.2.4 Sample Selection 97
7.2.5 Labeling Strategy 101
7.2.6 Validation on CRIM13 102



contents vii

7.3 User Evaluation of the Annotation Framework 104
7.3.1 Experiment Setup 104
7.3.2 Results 105
7.3.3 Cross-dataset Validation on YR 107

7.4 Scaling Toward Learning in Larger Datasets 108
7.4.1 Results: Data Oracle 109
7.4.2 Results: Human Annotators 111

7.5 Discussion 112

8 Discussion 115
8.1 Summary of Contributions 115
8.2 Discussion of our Findings 116

8.2.1 Observation 116
8.2.2 Classi�cation 117
8.2.3 Cross-dataset Application 117
8.2.4 Interactive Annotation 118

8.3 Future Directions 121
8.4 Conclusion 123

Samenvatting 125

Bibliography 129

List of Publications 145

Acknowledgments 147

Curriculum Vitae 149

a Appendix 151





1Introduction

Measuring social behavior of rodents is a key process in various research
disciplines. In neuroscience, for example, rodent social behavior is studied
to understand the pathology and development of neurological conditions
such as Huntington’s disease. Social behavior is also relevant when moni-
toring animal welfare as the absence of social interaction can indicate an
unhealthy living environment.

The purpose of measuring behavior is to be able to compare it, either to
some desired state (e.g., a healthy environment) or among animal popula-
tions (e.g., healthy versus diseased). This requires quantifying the behavior
objectively which is typically achieved by counting occurrences of speci�c
actions and interactions, or timing their durations and frequencies. The ba-
sis of such quanti�cation is the annotation of the behaviors in either live
observations or video recordings.

The level of detail of the annotations determines how rich the result-
ing measurements are. For example, counting occurrences yields only one
measure per observation while annotating start and end times of each inter-
action also allows measuring the duration and frequency. Naturally, there
is a trade-o� between the level of detail and the time it takes a human to an-
notate at that level, which may range from approximately three to twelve
times the length of the observation [3, 18, 145].

In general, annotating videos manually is a time-consuming task and
it is desirable to alleviate some of the manual e�ort by automating it. Be-
sides saving time, automated annotation is consistent, produces replica-
ble output and can operate for extended periods of time without su�ering
from fatigue. Its e�ciency allows reanalyzing previous data under new hy-
potheses, saving both time and animals. Automation therefore contributes
directly to the goal of the three Rs [118], the ethical guideline for animal
research which aims to replace animal testing by alternative techniques, re-
duce the number of animals, and re�ne existing methodology. One of the
main limitations of current automated methods is their rigidity with re-
spect to varying environmental and experimental factors. In comparison,
humans have exceptional perception and interpretive skills which allow
them to abstract from irrelevant environmental factors. These skills still
seek to be matched by machines.

1



2 introduction

The �rst automated methods for behavior measurements focused on
quantifying movements and location preferences of single rodents by
tracking the rodent’s location in a video recording. These methods allowed
for measures such as the distance traveled or the time spent outside the
shelter [121, 135]. Later on, advances in digital image processing led to
better recognition of the visual information in the videos which allowed
to annotate the start and end times of speci�c actions such as walking and
rearing. To recognize and annotate rodent actions in videos, an algorithm
needs to compute for each video frame which action is performed. This
is a classi�cation task that can be addressed by using a computational
model that distinguishes actions based on input features. The features are
an abstraction from the visual information in the video and are typically
derived from the tracked locations, such as velocity, or directly from the
video image, such as body shape. This approach works well for measuring
single animal behavior but it lacks the ability to annotate interactions
among rodents.

Automatically annotating social behavior brings new challenges. First
and foremost, the locations of multiple, visually similar rodents have to
be tracked. This is particularly di�cult as the animals move quickly and
are similar in appearance. Although tracking remains to be a challenging
task, recent advances in video analysis led to reductions in the number of
errors made [113]. Now the tracking of multiple rodents is more robust and
accurate, which allows us to take the next step and consider the automated
annotation of speci�c interactions.

We continue with an explanation of the research context in Section 1.1
and the focus of our work in Section 1.2. A summary of the contributions
of this thesis is presented in Section 1.3.

1.1 Research Context: PhenoRat

This research was initiated by the EC FP7 Marie Curie PhenoRat project.
In this project four graduate fellows, two with a neuroscience background
and two with a computer science background, collaborated to study the
social behavior of rats. The two neuroscientists, Elisavet Kyriakou and
Giuseppe Manfré, investigated rat models for Spinocerebellar Ataxia type
17 [74–76] and Huntington’s disease [85], respectively. For behavior analy-
sis automated measurement methods were used. Developing and improv-
ing these automated methods was the main focus for the computer scien-
tists. The work involved investigations of novel algorithms for tracking the
locations of multiple rats in video as well as the automated classi�cation
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of rat social behavior based on those location trajectories. The latter is the
focus of the research presented in this thesis.

PhenoRat was managed by University Tübingen and Noldus Informa-
tion Technology bv in cooperation with Utrecht University and Radboud
University Medical Center Nijmegen. It ended on October 31, 2016. The
work presented here was conducted as part of the PhenoRat project and
continued afterward at Utrecht University.

1.2 Scope of this Thesis

Our main goal is to enable neuroscientists and biologists to quickly an-
notate videos of rodent social behavior experiments with support of auto-
mated annotations. Our focus lies on the e�cient training of the involved
classi�cation model. We approach this problem as an interactive annota-
tion task in which the researcher, the user of our method, starts anno-
tating examples of the relevant interactions while an algorithm learns to
distinguish the interactions from those examples. Once the algorithm has
learned su�ciently, it can propagate the annotations throughout the re-
maining videos automatically and thereby alleviate the user from much of
the manual e�ort. Typically, manual annotations are obtained by labeling
interactions sequentially as they occur in the video. This may not be the
best way for the algorithm to learn however as it may take a long time
until examples of rare interactions are encountered. To avoid the time-
consuming task of manually searching for such examples in the videos,
we instead aim at �nding potentially informative examples automatically.
The task for the user is then reduced to labeling the selected examples.

To be able to investigate and develop an interactive annotation method,
we �rst require a better understanding of the technical aspects that play
a role in automated annotation of rodent interactions. Therefore, we ana-
lyze various aspects with respect to their in�uence on the quality of the
automated annotations in Chapters 4 to 6. We then leverage these insights
in our interactive method which we present in Chapter 7.

For most of our work, we assume that the animal locations have been
tracked with a suitable algorithm that maintains the identities of the sub-
jects. As tracking errors are still common in practice, a systematic exam-
ination of the e�ect of these errors on the annotation accuracy is part of
our work (Chapter 5). We do not develop novel learning or classi�cation
algorithms but use established, o�-the-shelf methods. In fact, we generally
treat the classi�er as a black box that may be replaced by another suitable
algorithm in practice.
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Figure 1.1: Two rats in observation cage recorded from top view perspective.

We apply the presented work to social interactions between two rats
that can freely move within a controlled, con�ned space (the observation
cage) as shown in Figure 1.1. Social behavior is stimulated by a short (24-
48h) social isolation period – an experiment often conducted by neuro-
scientists to study the social behavior of rats with a neurological condi-
tion [45, 130]. We do not consider experiments in which the movement of
one or more animals is constrained as for example in the three-chamber
approach test [91]. This choice is the result of the collaboration with the
neuroscientists in the PhenoRat project (Section 1.1).

The interactions of the rats in the experiments include inspection behav-
ior in which the rats repeatedly approach each other, sni� their partners
and then retract. Following, social grooming, and play behavior is also ob-
served. Although we demonstrate our work primarily on one particular
set of interactions, we do not tailor our methods towards this set. In par-
ticular, we refrain from meticulous tuning of methods for the purpose of
increasing accuracy measures and attempt to draw conclusions regarding
the general nature of interactions rather than speci�c categories. In Chap-
ter 3 we discuss in more detail the characteristics of rodent interactions
performed by di�erent species, including rats and mice.

1.3 Contributions of this Thesis

We present our work on automatic annotation of rodent social interac-
tions in video. Our goal is to develop an interactive annotation method
that learns to recognize interactions from user-provided examples and so
reduces the manual annotation e�ort otherwise required. We make several
contributions to achieve this goal, which we summarize below. Unless oth-
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erwise speci�ed, all contributions have been made by Malte Lorbach, the
author of this thesis.

1. We �rst introduce a new research dataset (RatSI) that allows us to
study rat social behavior recognition. The dataset includes manual
annotations which serve as a ground truth for learning the classi�ca-
tion model and evaluating the automatically generated annotations.
It comprises nine videos with a total duration of 135 min. Since there
is no other rat social behavior dataset publicly available yet, we make
RatSI available to the research community. The videos and annota-
tions were obtained by Elisavet Kyriakou for a social interaction test
within the PhenoRat project. Compilation, processing and publica-
tion of the data was done by the author. (Chapter 3)

2. We systematically analyze the characteristics of rodent social behav-
ior in two datasets (RatSI and CRIM13) and thereby enhance our un-
derstanding of the challenges of automated annotation (Chapter 4).
We discuss topics related to learning, applying and evaluating behav-
ior classi�cation models.

We �rst examine how often and for how long speci�c interactions
occur in the considered datasets. We then analyze how the they are
annotated by human observers and whether the interactions show
aspects of ambiguity that lead to variance in the labeling. Finally,
we explore various features that are essential for distinguishing the
considered interactions automatically, such as the relative pose and
distance, and show how they can be extracted from the animal tra-
jectories. This yields a basic feature set applicable to a wider range
of rodent behavior data.

3. The challenging task of tracking the locations of multiple, similar
rodents may introduce errors in the data that we learn from and
that we use to distinguish interactions. In Chapter 5 we systemat-
ically analyze to what degree those errors a�ect the accuracy and
whether they a�ect some interactions more than others. In particular
we demonstrate that the current tracking method limits the recogni-
tion of interactions that happen in close contact. In this chapter we
also introduce our �rst classi�cation method for social interactions
that may serve as a baseline for other work.

4. It is desired that a classi�cation model can be applied to a variety
of experiment settings and behaviors without the need to retrain it.
Despite the fact that variations in the environment and the behavior
can occur unexpectedly and are sometimes beyond our control, the
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applicable scope is rarely evaluated in the literature. To study the risk
of loss in accuracy that are due to behavior variations, we conduct
cross-dataset classi�cation experiments in Chapter 6. An analysis
of the classi�cation models highlights the properties that limit the
applicable scope, and shows the potential for adaptation and transfer
to other settings.

5. In a scenario in which automated annotation is not possible because
no suitable classi�cation model is available, the human observer
is left with manually annotating videos. Our goal is to alleviate as
much of the manual e�ort as possible by training a new classi�ca-
tion model while the observer is annotating. As the model becomes
more accurate over time, it may take over the annotation task when
it achieves a satisfying performance. The human observer can then
stop annotating manually and save valuable time.

In order to reduce the time until the classi�er can take over the an-
notation, we may guide the human observer to annotate particularly
useful or rare examples �rst. For instance, interactions that are easy
to distinguish will only require a few examples until they are recog-
nized accurately, while visually similar cases may require more. In
Chapter 7 we present our interactive annotation framework which
realizes the above goals and allows the annotation of rodent behav-
ior videos with substantially reduced manual e�ort. We validate the
e�ciency of the approach with human annotators in a user study.

1.4 Thesis Outline

We begin with an overview of the literature on measuring rodent social
behavior in ethology and behavioral neuroscience, and the automation of
such measurements in Chapter 2. We introduce our research datasets in
Chapter 3, followed by an analysis of their main properties concerning
the recognition of social behavior in Chapter 4. We continue with a sys-
tematic analysis of the e�ects of varying tracking quality in Chapter 5.
Cross-dataset application of trained classi�cation models is investigated
in Chapter 6. Finally, we develop an interactive annotation framework and
evaluate it in a user study in Chapter 7. We conclude with a discussion of
our �ndings and future directions in Chapter 8.



2Measuring Rodent Social Behavior: an Overview

Research into the social behavior of rodents, be it for experimental or ob-
servational purposes, involves comparing behavior among di�erent ani-
mal populations or against some desired state. The key to make system-
atic comparisons is to describe the behavior quantitatively. Traditionally,
researchers have formalized the description of behavior by de�ning cate-
gories of behavioral events and then counting or timing their occurrences
in either live observations or video recordings [86]. For a quantitative com-
parison, the occurrences are then analyzed in terms of their frequency or
their mean and total durations.

Another form of describing behavior is to measure some aspect of the
observed animal numerically such as its velocity or its location. Although
such measures are quantitative by de�nition, they typically do not provide
meaningful insights on their own. Instead they need to be combined with
other information to derive more meaningful quantities. For example, it
could be of interest to use the velocity to derive an activity pro�le over the
course of a day-night cycle [22, 30], or to use the locations to determine
the latency until the animal dares to explore an open, unprotected area [11,
117]. Methods that directly measure such continuous aspects of behavior
require some form of automation when determining them by hand is im-
precise or infeasible (e.g. a velocity pro�le).

In this chapter, we give an overview of methods for measuring rodent so-
cial behavior used in literature. We provide an introduction to traditional,
manual measuring methods, although the main body is dedicated to auto-
mated methods. We discuss the advantages and disadvantages over manual
methods and elaborate on the challenges of automation, on current limita-
tions and open questions. To give a comprehensive overview, we discuss
all components involved in automated annotation, although the focus in
the thesis lies on learning classi�cation models e�ciently with reduced
manual e�ort.

2.1 Manual Measuring Methods

Measuring behavior based on a categorical classi�cation of involves three
steps: de�ning the categories, annotating observations in terms of those

7



8 measuring rodent social behavior: an overview

Figure 2.1: Examples of inspection and play behavior.

categories, and analyzing the annotations statistically. Let us look at each
step in detail.

2.1.1 De�ning Behavior Categories

For the traditional annotation methods, the behavior categories are de�ned
by a textual description of what constitutes certain behaviors and how they
di�er from other, similar behaviors. The description serves as training ma-
terial for the annotators and as documentation of the methodology behind
the behavioral study. A good description is clear, unambiguous and pro-
vides a su�cient distinction between the behaviors that are most alike.
Any room for interpretation as to whether or not a certain category ap-
plies to an observed situation leads to subjectivity in the annotations and
is therefore to be avoided [80].

Writing a good behavior de�nition is a challenging task. As a guide to
how behavior may be categorized, Martin et al. [86] distinguish between
de�ning categories in terms of either the structure of behavior or its con-
sequences. A description of structure includes the visual and physical ap-
pearance with respect to posture and movement of the animal, for exam-
ple scratch head with front paws. A description of the consequences deals
with the e�ects of the behavior on the environment, another animal or the
subject itself irrespective of how it is performed speci�cally. For example,
digging a hole describes the consequence of the action (a hole that was not
there before) without specifying the exact circumstances such as whether
front or hind paws are used.

De�ning meaningful categories with respect to a particular research
question is a process that often involves consulting the literature for stan-
dard ethograms and conducting preliminary experiments. By annotating
the observations of those experiments and thereby identifying ambiguous
and missing information, the behavior de�nitions can be expanded, im-
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proved or rewritten before the actual study is launched. Typical categories
used to describe rodent social behavior include approaching, following, oral
and anogenital inspection, social grooming and a variety of play or antago-
nistic behavior [99, 139, 148]. Figure 2.1 shows some examples.

2.1.2 Manually Annotating Behavior

Once the behavior categories are de�ned, an observer can annotate the
rodent’s behavior in either live observations or video recordings. In con-
trolled environments, the behavior is often recorded as it allows replaying
and watching fast activities in slow-motion to ensure no events are missed.
Figure 2.2 depicts two ways in which an annotation can be made [2]: as a
point event that merely indicates the occurrence of a behavior in time, or as
a state event that indicates the continuous performance of a behavior from
its beginning until its end. The latter allows computing the event duration
in addition to the frequency.

Although there are still cases in which annotations are made with pen
and paper, for example during �eld observations, in most laboratory and
other controlled environments the use of annotation software is standard
practice. Annotation software allows the observer to label events by key
strokes on the keyboard while watching the video. Features such as auto-
matically ending a state event once a new one is started, make labeling
mutually exclusive and exhaustive categories more e�cient. Furthermore,
it is often possible to score additional information alongside an event such
as who initiates an interaction. Integrated analysis tools simplify the com-
putation of statistics about the annotated observations.

Despite the fact that annotation software increases the e�ciency, man-
ual annotation remains a time-consuming task. The time needed depends
on the number of categories, the occurrence frequency of the behaviors
(several per minute or a few per hour), the level of detail of the annota-
tions (point or state events, and optional information), and the experience

Point events:

State events:

Figure 2.2: The occurrence of a speci�c behavior can be annotated as either a point
in time (point event) or a continuous performance (state event).
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of the annotator. The time may add up to twelve times the duration of the
video for creating temporally highly accurate annotations [145]. Behavior
annotation demands a high level of concentration from the observer over
a long period of time. The fatigue that inevitably sets in during long ob-
servation sessions can lead to mistakes as events may be missed, confused
or inaccurately labeled. Regular breaks are necessary which increases the
total annotation time further. The limited capacity of human annotators
makes long-term observations of days or weeks virtually impossible un-
less a team of annotators is employed to work simultaneously.

As discussed in the previous section, the quality of the category de�-
nitions is an important factor to mitigate subjectivity in the annotations.
But the interpretation of the de�nitions is not the only reason why two an-
notators may label the same videos di�erently [49]. Other factors include
preconception about the tested animals, variation in scoring behavior tran-
sitions and ambiguity of the video material. Preconceptions can occur if the
annotator is aware of the assignment of experiment groups such as a treat-
ment and control group [114]. Scoring the transition between two state
events, that is the time when one behavior ends and the following begins,
often causes variations as it is di�cult to de�ne and detect the exact point
in time objectively. Finally, the video recordings can be ambiguous when
essential information is hidden due to occlusion, bad lighting, focus or sim-
ply due to low video resolution. Clearly, ambiguity is not limited to video
recordings and may as well occur in �eld observations where animals are
not always in plain sight and close enough to see.

Technical issues with the recordings can be resolved by improving the
recording facilities, for example by installing multiple cameras at di�erent
view points. Such solutions come with a higher cost for equipment, instal-
lation e�ort and technical challenges such as time synchronization among
cameras. Temporal variations may be reduced by thorough training of the
annotators but is likely to remain to some degree. Similarly, preconceptions
can be mitigated by hiding the group assignments from the scorer but can-
not always be eliminated completely as treatment and disease could leave
visible marks on the animals.

Total objectivity of human annotators may be impossible to achieve in
practice, but we can take measures to ensure a high quality. Monitoring the
quality is a �rst important step that helps to decide whether we can trust
the conclusion drawn from a behavior study [54]. A way to make such a de-
cision is to ask whether we would arrive at the same conclusion if another
annotator had labeled the behavior using the same methods. This question
relates to the inter-annotator reliability. The reliability can be expressed in
terms of the percentage of agreement [19] or its chance-corrected version
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called Cohen’s kappa [23]. In any case, at least two sets of annotations for
the same videos from di�erent annotators are required. In order to con-
tain the additional annotation e�ort, only a subset of the observations is
labeled by multiple annotators in some studies and the results are then ex-
trapolated to the rest of the study [59]. Typical �gures of the reliability in
literature for open �eld rodent behavior range from 60% to 70% [3, 18, 59].
Note that it is unclear what an acceptable value for the reliability is as the
exact �gure depends not only on the agreement but also on the occurrence
frequencies of the di�erent categories and in particular whether they are
skewed or balanced [23]. Moreover, for state event sequences with a be-
ginning and an end, a more complex analysis of agreement that �rst aligns
the state events could in fact be more accurate than percentage agreement
scores that do not take the event durations into account [105].

In general, researchers aim at minimizing subjectivity and ambiguity by
meticulously de�ning what a certain behavior constitutes and by using
an adequate acquisition setup. Despite this e�ort, it takes a considerable
amount of time to train annotators and to gain su�cient experience as
a group of annotators to produce annotations with a high level of agree-
ment. In appreciation of the possibility that some disagreement will always
remain, monitoring the disagreement is crucial to behavior research and
the re�nement of the methodology.

2.1.3 Analyzing Annotated Behavior

Once the desired behaviors are annotated, they can be analyzed with re-
spect to the study’s research question. The question often concerns the
phenotype of an animal population which describes behavior that is charac-
teristic for that population. Researchers typically want to explore whether
there are signi�cant di�erences in the phenotypes across populations (e.g.,
healthy versus diseased). Which measures are considered part of the phe-
notype depends on the exact research question. Common types include the
frequency and the duration of the occurrences of each behavior category
and how they change over time (short-term over a day-night cycle or long-
term over the entire lifetime). More comprehensive phenotypes involve a
temporal analysis of particular behavior sequences as they for example oc-
cur in grooming [64] and mating behavior [60]. They may further include
properties of group behavior and social hierarchies [129]. Discussing the
details of such analyses is beyond the scope of the thesis. We refer to liter-
ature from behavioral biology for further reading, for example [79, 86].
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Observation Annotation

Tracking/
FeaturesInput signal Classification Labels

Figure 2.3: Components of an automated annotation system.

2.2 Automatically Annotating Behavior

In the previous section, we discussed the traditional, manual approach to
de�ne, annotate and analyze rodent behavior. We highlighted the main
limitations of human annotators, namely: subjectivity and annotation time.
Automated annotation methods are an attractive alternative to manual la-
beling. Automation can alleviate much of the manual e�ort and enable con-
sistent and repeatable analysis of hours of behavior observations. Other
than for annotating behavior categories, computers can also be employed
for directly measuring kinematic quantities such as velocity, activity or
posture. We consider these complementary to the categorical approach and
refer to other literature for an overview [34, 40, 109].

In our review of automated annotation methods, we focus on work that
considers behavior of freely moving rodents (e. g. open �eld tests). We
do not consider test setups that focus on one speci�c aspect of behavior
such as the elevated plus maze [52] or the three chamber social approach
test [94].

Conceptually, automated annotation methods have of two main com-
ponents as illustrated in Figure 2.3, namely: a) an observation component
which extracts meaningful information (features) from the input signal
such as a video, and b) an annotation component which uses a classi�ca-
tion algorithm to label the behavior based on the extracted features. Let us
examine these components in more detail.

2.2.1 Observation

The observation component involves acquiring the input signal, such as a
video, and then extracting features from that input signal, for example, the
location of the animals or their posture. The input signal can be acquired
from a variety of hardware devices and the choice depends on the behavior
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that is to be measured. Rearing behavior, for example, can be measured by
infrared light-beams that detect when a rodent crosses one of the horizon-
tally arranged rays [62, 91]. Accelerometers detect vibrations that allow
for measuring the repetitive motions of grooming behavior [17]. A rough
localization can also be achieved with an observation platform equipped
with force sensors [51].

For recognizing social interactions, the locations of the animals relative
to each other is important information. In literature, methods for determin-
ing the animal locations use either radio-frequency identi�cation (RFID) or
video cameras. In an RFID setup, every animal carries a small transponder
implanted under the skin in the neck. If such a transponder is stimulated
by a radio wave with a particular frequency, it returns a unique radio sig-
nal. This signal identi�es the animal and can be detected by antennas to
perceive the animal’s presence. RFID setups are often used for larger cages
with multiple compartments. By placing antennas at strategic positions
such as doors between compartments, it is possible to track the animals’
visits to certain areas [46, 56, 81] and to perform operant conditioning
tasks [6, 68, 150]. It is also possible to arrange multiple antennas in a grid
in the cage �oor to enable location tracking within a compartment [147].
However, the physical placement of antennas limits the spatial resolution
of the tracked locations to about 10 to 40 cm [147]. The low resolution pre-
vents detecting speci�c social interactions such as following or inspection.

The majority of recent work on rodent location tracking relies on us-
ing video cameras and computer vision algorithms to track the animals.
Video-based methods have the advantage that they are non-intrusive to
the animals and are available at low cost. Moreover, video images allow
extraction of not only the locations at a high spatial and temporal reso-
lution but also of the animal’s posture and appearance which leads to a
richer behavior description.

2.2.1.1 Video-based location tracking

The tasks of tracking a single rodent and tracking multiple rodents simul-
taneously in a video have di�erent requirements. Although we consider
them to be disjoint tasks, they do share a few basic concepts which we
want to elaborate. Generally, the goal is to locate the rodents in every
video image. That requires the separation of pixels that belong to an ani-
mal from the non-animal pixels. Let us consider the animal pixels to be the
foreground while everything else, the cage, the �oor and other objects, is
part of the background. The segmentation of foreground and background
is typically one of the �rst steps of any tracking algorithm irrespective of
the number of animals.
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Input frame
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Figure 2.4: A stored background image is subtracted from the video frame to seg-
ment the foreground (the animals).

In the simplest case, both camera position and background are static and
do not change over the course of a video. Then it is possible to keep a ref-
erence image of the background (without animals) and subtract that image
from every video frame as illustrated in Figure 2.4. After subtraction only
foreground pixels have non-zero values, which separates the animal from
the background and allows calculating its location in the image [57]. In
practice, the reference image is not always a perfect representation of the
background as lighting may change slightly and objects and cage bedding
(e. g. sawdust) may shift. Background subtraction then fails to create a crisp
separation of the foreground and thus causes inaccurate localization. Small
or gradual changes in the background can be addressed by updating the
reference image from several past video frames. By averaging over those
frames, moving foreground objects are eliminated [37]. It has also proven
useful to relax the condition for background pixels after subtraction and
also �lter pixels whose value is not exactly but close to zero [92, 135]. Find-
ing a suitable threshold for this �ltering problem can be challenging as
lighting conditions often vary across videos. Other image processing tech-
niques such as blob detection and morphological operations can further
improve the results [28].

Background subtraction aims at identifying the foreground by elimina-
tion. Because there is no model of the foreground involved, it is suitable
for detecting any object that is su�ciently di�erent from the background.
If a foreground model is available, though, it may improve the detection as
other objects such as feces and shifted bedding become easier to eliminate.
Moreover, using a foreground model is also applicable to less controlled
environments in which the background is not static such as in �eld obser-
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(a) Training image for a rodent shape model (b) Di�erent model parameters result it good
and bad �ts in a test image

Figure 2.5: Several key points, encoding local texture and global shape information,
form together an appearance model of a rodent.

vations. In rodent tracking, the knowledge of the foreground object (i. e.
the rodent) can be utilized to improve the accuracy of the tracking. Then
the task is to model the appearance of a rodent and use that model to detect
a matching instance in the video image [156].

The appearance of the rodent can be described in terms of the shape
of its contour and the intensity values of the enclosed pixels. In the case
of rodents, but also for other deformable objects such as human faces or
�sh, the appearance variations are constrained by the body structure. Ac-
tive shape models (ASMs) [25] exploit this fact and statistically model both
global (shape) and local appearance information (texture). The parameters
of the model are learned from examples images of the object to �nd, in our
case the rodent. Finding a rodent in a novel image then involves �tting the
model to di�erent locations in the image and selecting the instance that
best �ts the learned parameters as illustrated in Figure 2.5. A greedy search
over all parameter combinations and locations is typically intractable and
it is more e�cient to restrict the search to suitable candidates. Twining et
al. [141], for example, �rst perform a rough background subtraction leav-
ing only the rodent and potential artifacts such as re�ections as candidates.
The search is then initialized with the �t from the previous frame and this
hypothesis is iteratively updated until it converges to the rodent’s contour.
Similarly, de Chaumont et al. [31] manually de�ne a shape model based
on multiple geometric primitives (e.g., ellipses) as well as their relative dis-
placements, and �t the model to the image using a physics engine.

Note that most rodent behavior experiments are conducted in the
animal’s active phase during the night. Video recordings are typically
monochrome as they are made under near-infrared (red-light) illumina-
tion which appears invisible to the rodents. Color information is therefore
not available for tracking.
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2.2.1.2 Tracking Multiple Rodents under Occlusion

Both foreground segmentation and model-based detection work well for
tracking the location of single rodents. If multiple rodents are observed, the
tracking algorithm has the additional task of separating the individuals and
identifying them consistently across video frames. Typically the number
of animals present is known. Therefore, in images in which the rodents are
far away from each other, �nding each individual is conceptually identical
to �nding a single rodent in some sub-region of the image. However, if
they are close, in contact or occlude each other, the separation becomes
more challenging.

Approaches that rely on foreground segmentation need to separate the
extracted foreground pixels into multiple parts, each corresponding to one
rodent. Given that the animals used in experiments are often from the same
genetic background, they have the same fur color. When the animals are
in contact, their contours can be ambiguous. Information from previous or
future frames, for example the optical �ow, can indicate di�erent motion
directions and thus help separating the animals [16, 63].

Although optical �ow may not solve situations with similar motion
directions, motion in general is a useful cue for dealing with occlusion.
Model-based tracking approaches can bene�t directly from using motion
cues when they are incorporated in the model. Mayya et al. [89] for
example de�ne local motion models for several body parts and then use a
Kalman �lter to follow the most likely trajectory of each animal.

A popular tracking method that combines both appearance and motion
cues is particle �ltering [15, 67, 103]. A particle �lter maintains a large num-
ber of particles, each representing a hypothesis for a rodent’s location. In
every video frame, each particle updates its location according to a motion
model which describes the typical movement of a rodent from one frame to
the next. Because the update is stochastic, each particle moves di�erently.
After the location update, the particles are evaluated based on the current
video frame and an observation model which describes the appearance of
a rodent. Particles that did not follow the trajectory of a rodent will contra-
dict the observation model and are thus discarded as invalid hypotheses.
The remaining particles again update their locations and the next frame
is processed. After a few frames, only valid hypotheses that represent the
true location of the rodents are left.

The key components of a particle �lter are the observation and motion
models. These are formulated probabilistically. The observation model al-
lows evaluating a location hypothesis against the current observation us-
ing a likelihood function. Branson et al. [15] incorporate in the observa-
tion model for mice both foreground segmentation features (a rotated and
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scaled ellipse) and shape features from contour templates. Their motion
model represents typical displacements by an autoregressive model which
can be sampled to generate random particle updates. Pistori et al. [103] use
a random walk model for the same task.

The ability to correctly solve occlusion situations with a particle �lter
depends predominantly on how the observation model deals with only par-
tially visible animals. Due to the highly deformable shape of rodents, it is
di�cult to explicitly model occlusions. As we have discussed before, incor-
porating motion cues in the observation model can partly compensate for
the missing appearance information [16, 63].

2.2.1.3 Maintaining Identities of Multiple Rodents

Separating the animals in the image is one of the challenges that arises
from tracking multiple animals. Another is maintaining the correct identi-
ties throughout the entire video. Maintaining identities is highly relevant
when the sociability of individual animals is measured. For example, it may
be of interest to determine the initiator and the receiver of an interaction
to assess social hierarchies [1, 8, 142, 147].

To maintain identities, the tracking algorithm needs to associate the lo-
cation of an individual in one video frame with its corresponding loca-
tion in the next frame. This is a simple task as long as the animals are
separated by a distance larger than their displacement between the two
frames. Then each new location can be linked to the closest location from
the previous frame. In contact and occlusion situations, this distance cue is
unreliable. Instead, temporal cues such as the smoothness of motion may
be used to propagate the identities according to a smooth continuation of
the movement [123]. However, the assumption of smooth motion is some-
times violated as well. For example, in fast-paced playing or �ghting inter-
actions, the erratic movements of the rodents can cause the identities to be
confused. Therefore, approaches that rely solely on distance and temporal
continuation risk to propagate confusions through the rest of the video
without any chance for recovery.

To prevent error propagation and to automatically correct identity con-
fusions, visual appearance features that distinguish the individual animals
are needed. These can be natural features such as fur color [55] or body
size [92]. It may also be possible to detect small di�erences in fur pat-
terns [101] or in body temperature using a high-resolution thermal cam-
era [48]. If the animals lack any obvious, visual feature that would dis-
tinguish them or if the di�erences are too small, arti�cial features can be
added. Shemesh et al. [129] applied �uorescent markers to the fur that light
up in di�erent colors under UV light, and Ohayon et al. [93] dyed the fur
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(a) Top view (b) Side view

Figure 2.6: 3D point clouds of two rats recorded with a depth camera.

with di�erent patterns of strokes and dots. Under daylight conditions col-
ored tags can be used to track and identify the animals [104]. As natural
features are not always available, tracking with arti�cial markers, includ-
ing RFID tags, is still the only reliable option to maintain identities in social
behavior experiments.

2.2.1.4 Markerless Tracking in 3D Images

Applying arti�cial markers requires handling the animals prior to experi-
mentation which can induce stress and consequently alter the behavior. It
is therefore generally preferred to achieve identi�cation without markers.
Recent advances in 3D imaging could present a new approach to tackle the
occlusion challenge and therefore make identi�cation more robust. With
3D imaging the animals can be represented as three-dimensional volumes
instead of two-dimensional shapes as illustrated in Figure 2.6. Using the
extra dimension, occlusions can be resolved with higher accuracy as the
contours in the contact regions are better visible. 3D videos of rodents can
be acquired from depth cameras [55, 90, 153] or from multiple video cam-
eras with di�erent viewpoints [120, 128].

An additional advantage of using 3D imaging to observe the rodents is
that they allow the reconstruction of the 3D pose. The pose can be rep-
resented by the location of speci�c points on the body such as nose, tail
base and ears [120] or larger body parts such as head, trunk and hip [87,
88]. From this 3D pose, elevated activities such as rearing or crawling over
another animal can be derived more easily, which eliminates some of the
limitations of the standard top view cameras. Because of the potential to
create richer descriptions of behavior, the use of 3D imaging for rodent
observations is gradually receiving more attention.
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Yet, a number of challenges limit the applicability of 3D cameras in prac-
tice. One is the increased requirement for data storage. 3D images are mul-
tiple times larger in �le size than 2D images due to the lack of appropriate
compression algorithms. An experiment of a few hours of observations eas-
ily requires several terabytes of disk space. Furthermore, processing 3D im-
ages is more complex, has a higher demand on the computational resources
and many established image processing techniques are restricted to 2D im-
ages. This makes the development of tracking algorithms more challeng-
ing and time-consuming. Finally, most depth cameras provide 3D images
in the form of point clouds representing the observed surfaces. They do not
provide appearance information such as illumination, contrast and texture.
Given that such information may be needed to uniquely identify the ani-
mals after potential confusions, an additional, 2D camera may have to be
installed, synchronized and registered (i. e. calibrated) with the 3D cam-
era [55]. The 2D camera has the additional bene�t that the researcher can
validate observations in the more familiar 2D videos but obviously further
increases both storage and computational requirements.

2.2.1.5 Evaluating Tracking Quality

Despite playing such a crucial role in behavior analysis, the quality of ro-
dent tracking is rarely evaluated systematically because the ground truth
to compare with is time-consuming to generate manually. As there is no
benchmark dataset publicly available, literature comprises only few quan-
titative evaluations [55, 119] or comparisons among methods [143]. The
lack of quantitative analyses raises the questions what in�uence the track-
ing quality may have on automated annotation methods. We address this
question in Chapter 5 and conduct a systematic analysis of the e�ects of
tracking quality on the annotation accuracy.

2.2.1.6 Deriving Features for Behavior Classi�cation

Once the locations of the rodents are tracked, features can be derived from
those tracks. These features represent relevant aspects of the behaviors
and enable the subsequent inference algorithm to classify and annotate
the behaviors. Therefore, the choice of features is often geared toward the
relevant behaviors. A basic feature set for social interactions comprises the
velocity of each rodent as well as the distances and orientations between
them [18, 48, 61].

Additional features can be included if a detailed pose representation can
be extracted from the trajectories. For non-social behaviors it has been
shown that extracting a pose representation based on multiple body parts
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improves the accuracy of automated annotation [33]. It is likely to improve
social behavior recognition as well. Extracting the pose requires that the
tracking algorithm not only provides the center point locations of the an-
imals [4, 18, 147], but also locations from other body points such as the
nose or tail-base [31, 48]. Detailed distance and motion information allow
for annotation of interactions between speci�c body parts such as nose-
nose inspection. We perform an experiment to demonstrate the e�ect of
pose information on annotating social behavior in Chapter 5.

In case it is not possible to reconstruct the pose representation from
tracking data, one may instead use features derived directly from the im-
ages. For example, tracking a large number of key points in the video, such
as corners and edges, yields a global description of the motion in the video.
This approach has been applied to a single mouse [38, 59]. Similarly, the
optical �ow can be computed to describe the motion of body parts [145].
Despite the successful application on individual rodents, comparable im-
age features only led to a minor improvement for annotating social be-
havior [18]. Presumably, detailed body motion is less informative for the
considered social interactions which are mostly related to the trajectories
of the animals relative to each other. Furthermore, in the social setting it
is more di�cult to associate the key points with the correct animal, in par-
ticular in contact situations where it would be most useful.

As mentioned before, developing a feature extraction method typically
requires the design of features for speci�c behaviors and involves a certain
amount of manual tuning to reach satisfying annotation results. Methods
that automatically learn suitable feature representations and classi�cation
models jointly from a large set of annotated training data, are becoming
increasingly popular for computer vision applications in general and thus
also for rodent behavior recognition. We brie�y discuss such end-to-end
recognition frameworks in Section 2.2.3.

2.2.2 Annotation by Classi�cation

We now turn to the annotation component. The task of the annotation com-
ponent is to label the occurrences of behaviors in a recording. It infers the
labels from the features provided by the observation component. The �nal
labeling output should facilitate further behavior analysis, for example, to
examine occurrence frequencies and mean or total durations of speci�c
behavior categories. Therefore, the annotation component must label the
occurrence of a behavior and its beginning and end time. The automati-
cally generated annotations are thus directly comparable to annotations
obtained from a human observer.
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Figure 2.7: Bottom-up (frame-based) and top-down (event-based) classi�cation
schemes.

The behavior categories, as de�ned by the investigator of the behavior
study, are typically mutually exclusive and exhaustive [2, 100, 137, 139].
That is, they are de�ned such that at any time in the video, there occurs
exactly one behavior that can be labeled. This allows us to formulate the an-
notation task as a classi�cation problem. Every video frame, represented
by a feature vector x , is classi�ed into one discrete behavior category ŷ.
The classi�cation can be achieved by expressing the behavior categories
in terms of mathematical models that create a mapping from features to
categories: fθ : x 7→ ŷ, where θ are parameters of the model f . For in-
stance, a simple threshold function could map the distance between two
animals to two discrete states, either being in proximity or at a distance [27,
31]. Much of the early work on rodent behavior annotation used such sim-
ple rule-based models [134, 135]. They are attractive because the limited
number of parameters makes them easy to work with. The parameters are
determined manually in such a way that the experimenter is satis�ed with
the model output for some given input [66, 147]. Naturally, this approach
requires a considerable amount of trial and error, and the manual tuning
complexity increases with the number of parameters.

With machine learning, manual tuning can be replaced by a learning
algorithm [13]. Learning algorithms determine the model parameters au-
tomatically and in a fraction of the time needed with manual tuning. This
speed-up allows for training more complex classi�cation models that can
distinguish between multiple, �ne-grained behaviors. Popular models used
for rodent behavior classi�cation include neural networks [53, 115], deci-
sion trees [48, 55], and support vector machines [42, 59]. We will discuss
the training of such classi�ers with rodent data in Section 2.2.2.1.

Approaching the annotation problem at the frame-level allows us to use
many o�-the-shelf classi�ers because every frame is considered an inde-
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pendent sample. Clearly, consecutive video frames are not actually inde-
pendent and the context given by surrounding frames can potentially in-
form and improve the classi�cation. For example, to classify approach be-
havior it may be more informative to compare the distance between the
animals at the beginning of the approach and at the end, rather than to
rely on measuring the change of distance in adjacent frames. The di�culty
to incorporate such context information is because frame-level classi�ca-
tion lacks the explicit notion of a behavior segment (state event), that is, a
consecutive sequence of frames showing one behavior. Although informa-
tion from surrounding frames can be incorporated, the temporal distance
at which this happens is arbitrary. Burgos-Artizzu et al. [18], for instance,
incorporate con�dence scores of the classi�er from a �xed window of up to
615 frames irrespective of the behavior category. A �xed window cannot
facilitate behaviors with di�erent durations.

In order to incorporate contextual information over an extended and
variable period of time, the annotation task has to be approached from a
di�erent perspective. Instead of proceeding from frames to segments in a
bottom-up approach as illustrated in Figure 2.7, we can choose a top-down
approach and segment the video directly into labeled state events. The task
is then to �nd the optimal temporal segmentation of the entire video. This
allows the classi�er to incorporate information at variable temporal dis-
tances, for instance, from behavior transitions such as the beginning and
the end of an approach [42]. The family of classi�cation models for such
a task are structured prediction algorithms, named after their structured
output (in our case the labels and the start and end times of each state
event in a video). An example is the structured support vector machine
(SVMstruct) [140].

The main disadvantage of the top-down classi�cation approach is its
high computational complexity. The number of segmentation possibilities
increases exponentially with both the number of categories and the length
of the video, which renders exact inference of the optimal segmentation
often intractable. Although e�cient algorithms such as dynamic program-
ming [9] (as used in [42]) or belief propagation [97] may be used in some
cases, the computational requirements remain higher than for bottom-up
classi�cation. Furthermore, a structured classi�cation model has often
more parameters to learn than a frame-level classi�er and generally
requires more training examples to ensure su�cient accuracy [73].

Although classi�ers based on Hidden Markov Models (HMMs) [106] are
conceptually top-down approaches, the Markov assumption limits the tem-
poral context that can be incorporated to only two consecutive temporal
units. This limited context can only be informative if the HMM is applied
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to an intermediate representation on a higher temporal scale than individ-
ual video frames. That is, a temporal unit should be longer than one frame.
Two consecutive video frames do not convey much contextual information
when the video frame rate is much higher than the rate of transitions be-
tween behaviors [4, 147]. A possible approach is to learn action units or
movemes [3] as an intermediate behavioral representation and to combine
the HMM with a context free grammar to model the temporal structure
of those units [73]. Learning such an intermediate representation together
with the corresponding temporal model requires a large amount of train-
ing data.

In the rodent behavior recognition literature, the majority of work takes
the bottom-up classi�cation approach. Its simplicity and the wide availabil-
ity of implemented, o�-the-shelf classi�ers makes it attractive. Moreover,
despite their limitations, frame-based models are still powerful models
whose capacities may not even be fully exploited yet. In light of other chal-
lenges such as tracking multiple rodents, deriving meaningful features and
learning from relatively small, unbalanced datasets, incorporating struc-
tured temporal context does not appear to be of the highest priority yet.

2.2.2.1 Learning Classi�cation Models

We have previously introduced the classi�cation model as a mapping from
a feature vector to a behavior label whose function is controlled by a set
of parameters θ . In this section we discuss approaches to automatically
determine the optimal parameters for a given classi�cation problem us-
ing machine learning. For this task, we will interchangeably use the terms
learning a model and training a classi�er.

The learning algorithms used for training rodent behavior classi�ers are
predominantly supervised [4, 18, 42, 48, 53, 55, 59, 115]. That is, the opti-
mal parameters θ̂ are inferred from annotated training examples. The set
of examples includes the behaviors that we expect the classi�er to recog-
nize when it is applied in practice. Ideally, every behavior category is rep-
resented by a large number of examples as the classi�er will generally be-
come more accurate with every additional example. The training set can be
obtained either from videos of previous studies that have already been an-
notated and analyzed with a traditional method, or from novel videos that
are recorded and manually annotated speci�cally for this purpose. Using
already annotated data saves both time and animals needed for the experi-
ments. However, manual corrections are sometimes needed to increase the
temporal accuracy of the annotations before they can be used for training.
In both cases, we have to appreciate the fact that we have limited control
over how the animals behave and how often they display certain actions.
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Since some behaviors occur rarely, it can be a tedious task to obtain a suf-
�cient number of examples from every category.

The learning algorithm uses the training set to determine the optimal pa-
rameters θ̂ . The optimal parameters are the ones that reproduce the labels
of the training examples with the fewest errors. The algorithm can achieve
a low error simply by remembering every example and the corresponding
label in a large database. Obviously, this algorithm has remembered but it
has not learned. In other words, it has not generalized from the empirical
examples to the natural variation of the behavior categories and it would
fail to produce a reasonable classi�cation for an unseen example. To evalu-
ate whether a classi�er has learned to generalize, a common technique is to
remove a subset of the examples and train the classi�er on the remaining
part. We can then count the mistakes on the removed examples to com-
pute the expected error for unseen examples. A more robust estimation of
the true error can be achieved by repeating this experiment with di�erent
parts removed and then averaging the error over repetitions. Such a pro-
cedure is called cross-validation in the machine learning domain and it is
used extensively in rodent behavior classi�cation [48, 59, 61, 145].

Cross-validation can also be used to analyze particular generalization
capabilities concerning for instance di�erent video acquisition environ-
ments, animal strains or gender [59, 145]. The examples to remove are
then chosen such that they contain a particular characteristic that is other-
wise absent in the training data. The evaluation on the removed examples
describes the ability of the classi�er to deal with unseen scenarios such
as a di�erent experiment setup. Because the majority of work on rodent
behavior classi�cation is based on examples from one environment, vali-
dation across environments is typically not performed. The lack of such a
validation can be critical in practice. In Chapter 6 we demonstrate with a
cross-dataset classi�cation experiment how variation in behavior caused
by the animal’s age a�ects the classi�cation error.

Both learning and evaluating rodent behavior classi�ers are based on
examples that have been labeled by a human annotator. As we have found
in previous sections (Section 2.1), human annotators are subject to dis-
agreement which a�ects both learning and evaluation. During learning we
may encounter examples that would have been labeled di�erently by an-
other annotator. This can cause the learning algorithm to �nd parameters
that are optimal for the examples labeled by one annotator but not opti-
mal when labeled by another. This is an undesired property as the train-
ing examples should be free of such disagreement. As a consequence, the
expected error, which is computed from the removed examples in cross-
validation, is subject to the level of disagreement in those examples. We
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�nd that two factors contribute to the expected error: the true inability
of the classi�er to recognize a behavior and the uncertainty that is due
to disagreement among annotators. Therefore, the expected error depends
on the level of disagreement in the test examples. This e�ectively puts an
upper bound on the achievable accuracy of the classi�er.

Suppose we knew which examples exhibit disagreement among annota-
tors. We could account for those examples during training and evaluation,
for example by simply omitting them or by weighing them di�erently in
the calculation of the error. The simplest way of determining disagreement
is to let multiple annotators label the same training examples. Obviously,
the manual e�ort multiplies with the number of annotators which quickly
renders this approach unattractive. Alternatively, a single annotator can be
asked to not only label the behaviors but also assign a weight to each exam-
ple according to its importance. Kabra et al. [61] evaluate their annotation
framework based on labeled video frames that have additionally been as-
signed three di�erent scores: important, unimportant and unknown. They
then evaluate the classi�cation error only on frames marked as important
and thus obtain a better estimate of the true expected error. The same
scheme could be extended to the classi�er training so as to learn only from
the important examples. On the one hand, it can be argued that forcing the
user to reason about the importance of an example decreases the chance
of annotation mistakes. On the other hand, disagreement caused by di�er-
ently interpreted behavior categories cannot be exposed in this way.

2.2.2.2 Learning with Human in the Loop

Until now we have assumed that training a behavior classi�er is a task
that has to be completed once, whereafter it can be used to annotate videos.
The scenario in which this is the case is restricted to situations in which no
substantial changes are made to either environment or animals. As we have
mentioned in the previous section, modi�cations to the acquisition setup
such as lighting or viewpoint, or testing a novel animal population that
displays unseen behavior variations, can a�ect the classi�cation accuracy.
Moreover, classi�ers are trained to detect a �xed set of behavior categories
and alterations to the de�nitions or an extension of this set is typically
not possible without retraining. In such scenarios, the trained classi�ers
cannot be used and the videos need to be labeled manually.

Although we may not be able to avoid manual labeling completely, we
can aim to reduce the manual work and support the labeling by automa-
tion. In fact, any annotation made by a human observer may be used for
training a new classi�er. Therefore, it is possible to train the classi�er at
the same time as the human annotates the videos: the human is included
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Figure 2.8: Active learning loop for automated annotation of rodent behavior.

in the loop. The more examples the human annotates, the better we can
train the classi�er. As soon as the classi�er has learned su�ciently, it may
take over the annotation task from the human. The crucial decision in this
scenario is to decide when to let the classi�er take over. This involves a
trade-o� between the time-investment of continuing the manual labeling
on the one hand and the potential increase in accuracy of the classi�er on
the other. Stopping early may result in misclassi�cations while stopping
late wastes valuable time because the classi�er has already converged to
its maximum accuracy.

The usual way of manually annotating a video is to label the behaviors
sequentially as they occur. This creates a sequence of labeled examples that
is ine�cient for training an accurate classi�er. A large number of videos
need to be labeled before su�cient examples of behaviors that occur infre-
quently are included. Instead, it is desirable to make a more balanced and
varied selection of examples across videos that includes all behaviors.

The human in the loop concept is implemented in the Janelia Automatic
Animal Behavior Annotator (JAABA) framework [61]. The user of the
framework labels a number of video segments while a classi�er is repeat-
edly trained. The classi�er then propagates the annotations to the unla-
beled parts of the videos which in turn are judged and possibly corrected by
the user. This loop continues until the user is satis�ed with the generated
annotations. Because the user chooses which examples to label, the quality
of the �nal annotation depends on this selection. The criterion based on
which humans choose examples may not necessarily coincide with what is
informative for the classi�er. Moreover, to �nd suitable segments the user
has to browse through the video which takes additional time and increases
the risk of missing relevant examples.
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In our interactive annotation framework that we present in Chapter 7,
we select examples automatically and actively query the user to provide
a label. This active learning loop is illustrated in Figure 2.8. Because the
selection is derived from the current classi�cation model, the examples
are informative from the perspective of the classi�er rather than the user.
The interaction of human and machine makes this learning paradigm pow-
erful [84, 125]. We exploit the perception and generalization skills of the
human while leaving the complex, objective computations to the machine.

2.2.3 End-To-End Recognition

Automated annotation is based on information (features) that is extracted
from the tracked animal locations or directly from the video frames. The
features are typically designed to capture relevant aspects of the behavior
to be annotated. For instance if we want to classify approach behavior, then
a meaningful feature could be the change of distance between the animals.
Designing features for every behavior category can be a time-consuming
task as it is not always clear what information should be extracted and how
to encode it in the features. Finding appropriate features often requires a
certain amount of trial and error.

A way to circumvent manual feature design is to learn the features simul-
taneously with the classi�cation model from labeled training data. Such
an end-to-end solution has as input signal the video image and as output
the behavior label. The ability to map directly from image to label comes
from a complex, non-linear model with a large number of parameters. The
complexity of the model makes it powerful but di�cult to learn [10]. The
learning algorithm requires a large number of training examples to �nd
an accurate model and the demand for computational resources is high. In
computer vision, such models have been successfully applied to recognize
objects in images [50, 71, 132] using millions of training images [36].

End-to-end methods for visual inference tasks typically involve convo-
lutional neural networks (CNNs). The architecture of such networks is par-
ticularly suited for learning visual features. It allows learning hierarchi-
cal feature layers, ranging from low-level information, such as edges and
corners, to mid-level representations of objects parts and �nally complete
scenes. Because the lower levels represent general visual features, which
are largely independent of the speci�c inference task, they can often be
reused and transferred into networks for related tasks [50]. The ability to
transfer previously obtained knowledge can drastically reduce the time
and the number of examples needed to learn a model.
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CNNs are also applied to recognize human actions in videos [44, 131].
Processing videos requires learning not only appearance features but also
temporal features that represent motion [138]. This further increases the
model complexity and the number of required training examples.

In the domain of rodent behavior recognition, CNNs have recently been
considered to classify individual behavior of rats and mice [69, 108]. The
proposed models are not yet powerful enough to replace annotation meth-
ods based on designed features. Besides the already mentioned task of mod-
eling motion in such networks, another challenge is the transfer of net-
works from the human to the rodent domain. Networks trained for object
detection or human action recognition typically learned from man-made
and natural scenes which are intrinsically di�erent from the laboratory
environments in which the rodent itself is the main subject of interest. If
instead a suitable network is to be trained from scratch, a large number of
labeled training videos need to be obtained �rst.

2.3 Conclusion

The desire to automate rodent behavior analysis has a long history and
solutions to measure behavior of individual rodents have been around for
several years. Only recently, with advances in machine vision, research on
recognizing speci�c interactions between rodents has gained momentum.
There are several challenges including location tracking and pose estima-
tion of multiple rodents, representing pose and motion with suitable fea-
tures, reasoning about interactions and their temporal extent, and learning
as well as validating classi�cation models. Previous work shows progress
in tackling one or more of these challenges, but is often applied to only
one set of videos and behaviors. The comparison and benchmark of the
proposed methods is hindered by the scarcity of publicly available social
behavior datasets. As a consequence, there is a demand for new datasets
and more importantly for a uni�ed recognition framework that is proven
to be applicable to a variety of experiment settings and behaviors. The re-
search on such a framework can build on the insights from previous work
and combines it to identify and tackle the prevailing challenges of rodent
interaction recognition.

The work in this thesis is primarily related to learning rodent behavior
classi�ers and aims at annotating behavior videos interactively with re-
duced manual e�ort. Much of this work relies on understanding the prop-
erties of rodent social behavior videos. Before we turn to the analysis of
these videos, we �rst introduce our publicly available rat social behavior
dataset in the following chapter.
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The research on automatic annotation of rodent behavior requires experi-
menting on realistic behavior data, in our case video recordings with the
corresponding true annotations. However, publicly available datasets of
rodent social behavior are scarce. In fact, only two datasets with mice are
currently available, the Caltech Resident-Intruder Mouse dataset (CRIM13)
and the Mice Behaviour Analysis dataset (MBADA), and no rat datasets.
Therefore, we have compiled two rat social behavior datasets for our re-
search, namely: the Young Rats (YR) dataset that was composed from exist-
ing recordings and the rat social interaction (RatSI) dataset that we newly
acquired within the PhenoRat project. The RatSI videos were recorded for
a longitudinal study on the social behavior in a rat model for Spinocerebel-
lar ataxia type 17 (SCA17), a neurological disorder associated with motor
and cognitive impairment. RatSI is made publicly available to the research
community (http://www.noldus.com/innovationworks/datasets/ratsi).

In this chapter we introduce YR and RatSI and also brie�y discuss the
two mouse datasets. Here we only describe the content of the datasets,
how they were acquired and what animals were used. We will discuss in
more detail the characteristics of the observed behavior and the di�erences
between the species in the following chapter.

3.1 Our Young Rats Dataset

The YR dataset is a collection of short video clips each containing one social
interaction between two rats. The locations of the rats are manually cor-
rected in every video frame which makes YR a controlled and polished da-
taset. These properties are ideal for studying tracking and feature-related
aspects in absence of other factors such as label noise. The fact that only
selected clips are annotated, however, makes it unsuitable for investigating
temporal aspects.

We compiled YR from �ve top view videos of an open-�eld social interac-
tion test provided by Suzanne Peters, Utrecht University. The recordings
were originally obtained and annotated for a study on play behavior of
young rats [102]. The provided annotations could not be used directly for
our research as they are not temporally accurate. Speci�cally, the start and
end points of the interactions as annotated do not consistently coincide
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Table 3.1: Description of behavior classes used in YR and RatSI.
Allogrooming Grooming another rat’s fur
Approaching Moving toward another rat in a straight line
Following Chasing another, moving rat within a tail length distance
Moving away Moving away from another rat in a straight line
Nape attacking Snout or oral contact directed at neck region, possibly with bit-

ing/pulling fur in that region
Pinning Actively restrain another rat on its back
Social nose contact Non-incidental nose-body contact (e.g. inspection)
Solitary Any activity not directed at another rat

Other (RatSI only) Any interaction not covered by another category
Uncertain (RatSI only) Ambiguous or occluded interactions

Figure 3.1: Example frames of the interactions in YR dataset.

Nose

Center

Tail-base

Figure 3.2: Three points on the body of every rat are tracked in YR and RatSI.
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with the video but may be shifted by a varying delay of up to one sec-
ond. Such delays occur when the researcher annotates while watching the
video without subsequent re�nement. Because the annotator needs to see
at least a few frames of an interaction before he or she can decide on the
category, the true beginning of the interaction is missed. While annotation
delays only have a minor in�uence on a subsequent analysis in terms of
counts and frequencies, we require frame-accurate annotations to be able
to develop and evaluate our automated annotation method.

To generate frame-accurate annotations from the original data, we ran-
domly select ten events of each interaction category per video (400 seg-
ments in total) and correct their start and end times. In total this yields
12.6 min of accurately annotated video. Note that some interactions suc-
ceed each other immediately, forming one longer clip of two or more in-
teractions.

3.1.1 Behavior Classes

We include seven interaction categories and additionally one category that
covers all solitary actions. The categories are brie�y described in Table 3.1
(see the detailed de�nitions in Table A.1 in Appendix A) and example
frames are shown in Figure 3.1. The annotated interactions are related ei-
ther to the trajectories of the animals such as approaching and following, or
to the contact between the rats such as allogrooming and nape attacking.

3.1.2 Tracking

The locations of the rats, including three body points (nose, center of body
mass, and tail-base), were tracked with Noldus EthoVision XT 11. See Fig-
ure 3.2 for an illustration of the tracked points. Body point locations and
identity errors were corrected manually within the selected clips including
a 0.6 s (15 frames) margin before and after each interaction. For the analy-
sis of tracking quality in Chapter 5, this correction is achieved in two steps.
First, the identities are corrected, keeping potentially inaccurate tracking
locations. In the second step, the body point locations are also corrected.

3.1.3 Experiment Protocol & Animals

The recordings of YR are part of a larger social interaction study adopt-
ing the following protocol. On two separate days before the recordings,
the rats were individually introduced to the cage arena for thirty minutes.
Forty-eight hours before the test, the rats were isolated to stimulate a de-
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sire for social interaction. Each rat was then put in the recording cage to-
gether with a familiar sibling. Recordings last for thirty minutes and are
made from a top view perspective in a 90x90 cm Noldus PhenoTyper® 9000
cage with standard top unit (image resolution 704× 576 px, 25 fps) without
bedding or accessories. The videos are monochrome as they are recorded
under red-light conditions during the animals’ active, dark phase.

One group of ten naive Sprague Dawley males, 5 weeks old, were used.
The animals were housed socially under reversed day-light cycle condi-
tions and water and food were available ad libitum. The experiments were
performed in adherence to the legal requirements of Dutch legislation on
laboratory animals (WOD/Dutch “Experiments on Animals Act”) and were
reviewed and approved by an Animal Ethics Committee (“Lely-DEC”). For
more details, refer to the original study [102].

3.2 Our RatSI Dataset

Our Rat Social Interaction (RatSI) dataset consists of nine fully-annotated
videos of 15 min each. The recordings and annotations were made by E.I.
Kyriakou at the Radboud University Nijmegen Medical Center, who con-
ducted the experiments to study a rat model for SCA17 [65, 76]. The con-
tents of the recordings are comparable to YR, except that the animals are
older (9 months instead of 5 weeks) and therefore larger. As RatSI contains
continuous videos, it represents a realistic use case for automated interac-
tion recognition.

During the acquisition of RatSI, the annotator was instructed to score the
start and end points of interactions accurately without the delays found in
YR. While such accurate annotations are more time-consuming to obtain,
they do not require correction afterward. The interactions are mutually
exclusive and therefore cannot overlap in time. Hence, the start of a new
interaction coincides with the end of the previous. In addition to time and
category, the annotators also scored which animal plays the active role in
the interaction. The active animal is de�ned as the rat that is for example
following or moving away. When both animals perform the same interac-
tion together, for instance when both approach each other, it is scored as
such. The rats are easily identi�ed by the black marking on the back of one
rat. In Chapter 4 we discuss the quality of the obtained annotations.

3.2.1 Behavior Classes

RatSI includes the same behavior categories as YR, described in Table 3.1.
Because each frame of the videos in RatSI is annotated, there are two ad-
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Figure 3.3: Example frames of each behavior in RatSI dataset.

ditional categories, namely: other and uncertain. Other is annotated for in-
teractions that are expected to occur but are not relevant for the study.
In RatSI these include amongst others boxing or wrestling. Uncertain is
reserved for cases in which the interaction is not clearly visible due to oc-
clusion, speed or video resolution. Example frames from RatSI videos are
shown in Figure 3.3. Note that the rats are larger compared to YR (Fig-
ure 3.1); the size of the cage is identical.

3.2.2 Tracking

The animal locations and body point positions (nose, center of body mass,
and tail-base) have been tracked throughout the videos using a tracking
algorithm that is based on Noldus EthoVision XT 12, extended by a cus-
tomized rat identi�cation algorithm. The identi�cation algorithm uses ap-
pearance di�erences (here reinforced by black markers) to distinguish and
maintain the identities up to a few errors per video which we correct manu-
ally afterward. Note that the identi�cation algorithm is under development
to facilitate markerless identi�cation and is therefore not included in the
o�cial EthoVision XT 12 version. The resulting tracking data is more ac-
curate than the uncorrected data in YR. Thus we do not manually correct
the body point locations in RatSI. In occlusion situations, locations can be
inaccurate and nose and tail-base points can be confused. Such confusions
are automatically corrected based on animal’s movement and typically last
for only a few frames.
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3.2.3 Experiment Protocol & Animals

The recorded experiments are part of a social interaction study adopting a
protocol similar to the one used for YR. Three days before the recordings,
the rats were individually introduced to the cage arena for twenty minutes.
Twenty-four hours before the test, the rats were isolated to stimulate a
desire for social interaction. Each rat was then put in the recording cage
(a 90x90 cm Noldus PhenoTyper® 9000) together with another, unfamiliar
rat. The recordings start with the introduction of the second animal and are
made from a top view perspective (image resolution 704 × 576 px, 25 fps)
without bedding or accessories. The videos are monochrome as they are
recorded under red-light conditions during the animals’ active, dark phase.

For testing, naive male rats, 9 months old, of two genotypes were used:
SCA17 (n = 8) and wild-type-like (Sprague Dawley, n = 10). The animals
were housed in pairs under reversed day-light cycle conditions and water
and food were available ad libitum. Testing was performed during the ani-
mals’ active (dark) phase. All experiments were performed after approval
of the Ethical Committee for Animal Experiments of the Radboud Univer-
sity Nijmegen Medical Center for compliance to ethical standards and use
of laboratory animals according to EU-guidelines.

3.3 Public Mouse Datasets

Although rats and mice are similar in the evolutionary sense, they have dif-
ferent behavioral traits. In particular, rats display di�erent social behavior
patterns such as complex play-�ghting which is not seen in mice [98, 100].
Rat and mouse datasets are therefore not simply interchangeable in the
search for automated measuring methods. Nonetheless, mouse behavior
datasets can be a valuable source of information for studying the inherent
characteristics of trajectory-related interactions. Together, rat and mouse
datasets pose an interesting task for domain adaptation or transfer learn-
ing [95], that is, the transfer of classi�cation models from one species to
another. In this section, we give an overview of the two publicly available
mouse social behavior datasets: CRIM13 and MBADA. We will use CRIM13
in later chapters. Note that a third mouse behavior dataset, the SCORHE da-
taset (https://scorhe.nih.gov), contains several short recordings of two
and three mice but no annotations of their interactions.

https://scorhe.nih.gov
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(a) CRIM13 (b) MBADA

Figure 3.4: Examples frames from mouse datasets.

3.3.1 CRIM13

The Caltech Resident-Intruder Mouse (CRIM13) dataset [18] comprises ap-
proximately 88 hours of annotated video recordings of a resident-intruder
experiment. This experiment is similar to the social interaction test of our
rat datasets in that two animals are interacting freely in an observation
cage. The main di�erence is that in CRIM13 the observation cage is the
home-cage of one of the mice, the male resident. The second mouse is
placed in the cage as an intruder whereupon the resident will typically in-
spect the intruder’s gender and engage in attack (if male) or courtship (if
female).

The original study, from which the material has been collected, is con-
cerned with the neurophysiological mechanisms in the mouse brain. The
researchers used optogenetic stimulation of neurons to manipulate the
level of aggression. This stimulation requires a physical connection with
the mouse brain which is always visible in the videos as seen in the lower
left corner in Figure 3.4a. The cable partly occludes the view on the mice
from the top view perspective. Although CRIM13 additionally contains
videos recorded from the side, the animal location tracking is based on
the top view alone.

3.3.1.1 Behavior Classes

The behavior of the resident mouse is annotated in the same way as in
RatSI, that is, with the beginning and end points of mutually exclusive, ex-
haustive categories. Only the behavior of the resident mouse is annotated.
The considered behaviors, listed in Table 3.2, include seven interactions,
�ve solitary actions, and two background categories for unspeci�ed, other
behavior and for human intervention (placing and retrieving the intruder).
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Table 3.2: Behaviors included in the CRIM13 and MBADA mouse datasets.
CRIM13 MBADA

Solitary Social Solitary Social
Drink Approach Stand alone Above

Eat Attack Walk alone Following
Clean Copulation Nose2Body

Human Chase Nose2Genitals
Up (Rearing) Circle Nose2Nose

Other Sni� Stand together
Walk away

There is some similarity between the categories of CRIM13 and RatSI, in-
cluding approach, chase (follow), sni� (social nose contact) and walk away
(moving away). The other category in CRIM13 comprises otherwise un-
speci�ed behavior, the majority of which is when the mouse is standing
and walking through the cage. These would be labeled solitary in RatSI.

3.3.1.2 Tracking

The mice locations are tracked in the top view videos by an undisclosed al-
gorithm giving access to the center point of each mouse in x ,y coordinates.
The accuracy is not evaluated empirically. Qualitatively, the accuracy of
the locations seems reliable, although noise clearly increases in occlusion
situations, e.g., during copulation and attack. A few identity swaps occur
but persist only brie�y. CRIM13 does not provide the locations of body
parts.

3.3.2 MBADA

The second mouse dataset is the Mice Behaviour Analysis (MBADA) data-
set [48]. It comprises 5.2 hours of video recordings of two or three mice
in a square observation cage. MBADA is recorded with a thermal infrared
camera allowing to measure the mice’ body temperatures. If the tempera-
tures are su�ciently di�erent, it can help to identify the subjects without
external markers. An example frame is shown in Figure 3.4b.

3.3.2.1 Behavior Classes

The included behaviors, listed in Table 3.2, are primarily de�ned by the
distance between speci�c body points. Merely following is determined by
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relative motion. The distribution of the frames among the behaviors in
Figure 3.5 shows that the recordings contain mostly unlabeled and solitary
behavior. Only 4% of the dataset (12.6 min) are social interactions.

0% 10% 20% 30% 40% 50%
Percentage of frames

Above
Following

Nose2Body
Nose2Genitals

Nose2Nose
Other

Standing Alone
Standing Together

Walking Alone

0.1%
0.2%
1.3%

0.5%
1.1%

52.2%
18.9%

0.9%
25.0%

Figure 3.5: Behavior distribution in MBADA (scorer 1), 5.7 × 106 frames (5.23 hrs).

3.3.2.2 Tracking

MBADA provides the tracking of the nose and tail-base points as well as
the center of body mass. The tracking algorithm �rst performs background
subtraction to locate the animals. If not all animals are well separated, the
body points are assigned in an iterative Expectation Maximization process
that places the nose and tail-base points on the edges of the major axis of
the segmented, elliptical shapes. Under the assumption that body points
do not move far between subsequent frames, the identities of the mice
are assigned. After occlusions, which can lead to incorrect identi�cation,
a heat signature extracted from the thermal image is used to reestablish
the identities. The accuracy of the tracking is not empirically evaluated.
Qualitatively, a few identity swaps occur, often after incidental contact,
but body points seem to be assigned accurately and correctly in most of
the frames. Accuracy degrades in contact and occlusion situations similar
to all other considered datasets.

3.4 Conclusion

We introduced two rat interaction datasets, YR and RatSI, which enable us
to investigate the automated recognition of rat social interactions. We have
made our larger dataset, RatSI, publicly available with the goal to support
further investigations by other researchers and to enable the benchmark
and comparison of automated measuring methods. We believe that our
dataset can help in particular those researchers who lack the facilities to
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acquire annotated behavior recordings on their own and those who wish
to validate their methods.

Throughout this thesis, we will repeatedly refer to CRIM13 as a point
for comparison between rat and mouse social behavior. Some interactions
in CRIM13 resemble those in YR and RatSI, and thus make such compar-
isons possible. In contrast, the fact that only the locations of the mice are
tracked in CRIM13, but no additional body points, poses a challenge for au-
tomatically recognizing interactions such as attack and copulation. As far
as MBADA is concerned, the low amount of motion-related interactions
leads us to the conclusion that MBADA is not su�ciently diverse for our
investigations.



4Analysis of Rodent Social Behavior in RatSI and
CRIM13

In this chapter we investigate rodent social behavior from a computational
point of view. Speci�cally we examine properties of social behavior data-
sets that are related to learning, applying and evaluating behavior classi�-
cation models. The knowledge that we gain from these investigations will
allow us to make informed choices in later chapters.

Regarding learning and evaluating, we �rst study the composition of the
RatSI and CRIM13 datasets by measuring how often speci�c interactions
occur based on human annotation. As we have discussed in Section 2.2.2.1
the occurrence frequency is valuable information as the absolute dataset
size is misleading if some interactions occur rarely. We further examine
whether occurrence frequencies change over the course of an experiment.
Then, we look at how the interactions are annotated by human observers
and examine the variance in their labeling with an inter-annotator relia-
bility study. By quantifying the disagreement in the annotations, we can
better judge the classi�cation performance (Section 2.2.2.1). Finally, we ex-
plore a possible feature representation for the animal trajectories that fa-
cilitates the automated classi�cation of the interactions.

The main contribution of this chapter is the systematic analysis of the
RatSI and CRIM13 datasets. Additionally, we introduce a set of features that
captures various aspects of rodent interactions and that forms the basis
for our classi�cation models in the following chapters. We use this analy-
sis to identify the characteristics of the considered data which helps us to
address them appropriately in the classi�cation method. Naturally, the spe-
ci�c characteristics depend on the type of experiment and behaviors, and
the results are limited to the RatSI and CRIM13 datasets. Other researchers
may use this chapter as inspiration to analyze their own datasets.

We begin with the analysis of occurrence frequencies in Section 4.1, fol-
lowed by a study of the inter-annotator agreement in Section 4.2. In Sec-
tion 4.3 we introduce the feature set and discuss its properties. We draw
conclusions from the results in Section 4.4.
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4.1 Composition of Rodent Social Behavior

We consider the behavioral composition of a dataset as a set of statistical
properties. Speci�cally, we include the number of occurrences of each be-
havior, how the frequencies of these occurrences change in the course of
a video, and whether occurrences of one behavior may be conditioned on
an immediately preceding behavior.

4.1.1 Occurrence Frequencies of Interactions

We take a probabilistic perspective and model the occurrence of a behav-
ior as a random variable. Let Ea be a random variable that represents the
occurrence of an event: an interaction of category a. Then, P(Ea) is the
prior probability that a given interaction observed in a video belongs to
the category a. P(Ea) provides us with the base rate with which a behavior
will occur in a video on average. We determine the prior probability for
every behavior in the dataset simply by counting how often it has been
annotated. We want to note that this view is strongly simpli�ed as it as-
sumes that every occurrence is independent of any external factors such
as the time of day, the experiment duration or preceding interactions. Fur-
thermore, we treat an occurrence of an interaction as a single event irre-
spective of its duration. Later, we will take the duration into account and
examine the prior probabilities with respect to single video frames.

In Figure 4.1 the prior probabilities of the occurrence of an interaction
in the datasets are shown in terms of percentages. In RatSI the most occur-
ring interactions are social nose contact, approach, following and moving
away (each covering approximately 10-20% of the behaviors). Interactions
with close contact (allogrooming and nape attacking) occur less frequently
(around 4%) and pinning rarely (less than 1%).
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Figure 4.1: Prior occurrence probabilities of behavior events expressed as percent-
ages.
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In CRIM13 the interactions between animals are slightly more balanced,
each typically covering approximately 4-8% of the behaviors. The excep-
tions are sni� with 16.8% at the upper end, and circle with only 0.5% at
the lower end. All solitary behaviors together are approximately 52.6% of
the dataset with the majority (38.8%) being labeled as other. Note that part
of the solitary actions happen in the beginning of each video when the
intruder mouse is not yet present in the cage.

Apart from a few exceptions in both datasets, the occurrences of the
interactions are relatively balanced. Nonetheless, the solitary actions occur
at least as frequently as the most occurring interaction and thus account
for a substantial portion of the datasets. The prior probability for solitary
behavior is therefore structurally higher than for most interactions.

The ratio between social and non-social behavior in the dataset is
important for the automated recognition. Recognizing interactions in
a large pool of non-social, background activities is more di�cult than
distinguishing between only interactions. Given the higher prior prob-
ability, the recognition may become biased towards predicting solitary
actions as it will, on average, cause fewer errors. The corresponding
classi�cation model should address the skewed priors, for example by
arti�cially balancing training and test data.
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Figure 4.2: Distribution of behaviors among the frames of RatSI and CRIM13.

Let us now take the duration of the behaviors into account. Let Fa be a
random variable that represents whether in a given video frame a particu-
lar interaction a is occurring. Since behaviors span multiple video frames,
the corresponding prior probability P(Fa) then also re�ects the typical du-
ration of the behavior. To determine the value of the prior probability for
each behavior, we count the number of frames that have been annotated
accordingly. The results are shown as percentages in Figure 4.2.

When durations are considered, the imbalance between the solitary ac-
tions and interactions becomes more extreme. In both datasets approxi-
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mately 60% of all frames belong to a solitary category leaving around 40%
of interesting and relevant interactions. The increased imbalance is due
to solitary behaviors that are in comparison considerably longer than the
interactions. Also among the interactions, the �gures vary. In RatSI, pin-
ning and nape attacking are the least represented interactions with 0.6%
and 1.0%, respectively. Similarly, circle and chase together account for less
than 2% of all frames in CRIM13.

To summarize, the social activities of the rodents in the datasets are
fewer in number than their solitary actions. Consequently, there is a sub-
stantial imbalance among the prior probabilities for the occurrence of each
behavior. Such an imbalance presents challenges for automated recogni-
tion methods in both training and prediction. Small classes that are un-
derrepresented in the set of training examples can lead to an inaccurate
classi�cation model as relevant variations of the behavior may be miss-
ing. During prediction the classi�er may be biased towards predicting the
majority class as this will, on average, cause fewer misclassi�cations. We
need to address the imbalance with appropriate measures, for example by
weighing the smaller classes relatively higher during learning and evalua-
tion.

4.1.2 Temporal Structure

In the previous section, we found that the ratio between social and non-
social behavior is approximately 40% to 60%, averaged over an entire data-
set. We are interested in whether this ratio changes over the duration of a
video (in our datasets up to 15 min) as this would a�ect the prior probabil-
ity. Additionally, we examine whether the occurrence of one interaction
makes it more likely for another interaction to occur right afterward. Such
increased or decreased occurrence probabilities could be indicative for a
temporal dependency across interactions.

We �rst address the ratio between social and non-social behavior. We
compute the ratio over time as follows. Every video is partitioned into in-
tervals of two minutes: {[0…2min), [2…4min), . . . }. Within each interval
we count the number of social and non-social frames. We average the re-
sulting ratios over the videos while keeping the partitioning into intervals.
The CRIM13 videos start and end with only the resident mouse in the cage,
where thus only solitary behavior can be observed. Since the time of intro-
duction and removal of the second mouse varies across videos, we crop the
videos before partitioning to the part where both mice are present. This en-
sures that we do not erroneously overestimate the amount of non-social
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Figure 4.3: Occurrence of behaviors over the course of the experiment videos.

behavior. RatSI videos start with the introduction of the second rat and
therefore do not require any pre-processing.

Figure 4.3a shows the ratio within each interval averaged across all
videos. In RatSI the percentage of social behavior seems to decrease slightly
over time but the large variance among videos does not allow for a con-
clusive judgment. In contrast, there is a clear decline in social activity in
CRIM13 from approximately 60% in the �rst two minutes to around 20%
in the end just before the intruder mouse is removed. Clearly, interactions
do not occur evenly in time and therefore the prior probabilities are not
constant.

If we break down the social behaviors into separate interaction classes,
we see that sni�ng behavior is the main contributor to the social activ-
ity in CRIM13 (Figure 4.3b). Its gradual decline also decreases the overall
amount of social behavior over time. In RatSI no such clear distinction is
found as all interactions vary only modestly in frequency over time. These
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activity pro�les highlight a structural di�erence between the experiment
setups of RatSI and CRIM13. In CRIM13 an intruder is placed in the home-
cage of the resident mouse which induces strong reactions in the resident.
The thorough inspection (sni�ng) of the intruder plays a dominant role in
this �rst reaction. In RatSI the rats meet on neutral ground after having
been isolated. Their desire for social interactions is expressed in a range of
behaviors whose frequencies do not decline as strongly as in CRIM13 in
the �rst 14 minutes.

Besides long-term changes in the interaction frequency, some interac-
tions may have a more direct relationship and regularly occur in succes-
sion. To analyze whether interactions are related temporally, we count how
often two behaviors occur immediately after each other. This allows us to
examine transition probabilities, that is the probability that a speci�c in-
teraction will occur right after another one. It is beyond the scope of this
chapter to perform a comprehensive sequential analysis of rodent behav-
ior and we refer to other literature [5] for studying sequences of higher
order and statistically analyzing such sequences.

We formulate the probability of a transition from one interaction to an-
other as the conditional probability P(E1 |E0). As before, the random vari-
ables E0 and E1 represent the event that a given behavior belongs to a spe-
ci�c category. Compared to the prior probability of a single event P(E1),
the added constraint is that event E1 occurs immediately after event E0.

To determine the conditional probabilities, we �rst count how often each
possible sequence of two consecutive interactions occurs in the dataset. For
K behavior categories, this yields K2 −K values. We subtract K because a
behavior event cannot repeat itself by de�nition (e.g., approach-approach).
We then divide these values by the number of occurrences of the �rst be-
havior, which results in the empirical measure of the conditional probabil-
ity:

P(E1 |E0) =
N (E0E1)

N (E0)
(4.1)

where N (E0E1) counts the occurrences of the E0E1 sequence and N (E0) the
occurrences of behavior event E0.

We display the probabilities for RatSI and CRIM13 in the transition ma-
trices in Figure 4.4. The matrix contains the conditional probabilities for
the transition from an interaction in a row to an interaction in a column:
P(column|row). Note that each row sums to one since there is always a
succeeding action.

In both datasets, a number of transitions appear more often than oth-
ers. In RatSI, for example, an approach is succeeded by social nose contact
with a 63% chance. In CRIM13, after a mouse walks away from the other,
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it almost always (93%) engages in solitary activities, unless it turns around
straight away to approach the other mouse again (7%). Similarly, some tran-
sitions barely occur at all. For one part this is simply due to logic: a rat
cannot approach another if it already established social nose contact. The
other part is formed by behavioral patterns: the mice in CRIM13 apparently
circle each other before attacking, but they never circle before copulation.

When we consider the automated recognition of interactions, a model
of the temporal relationship between interactions is potentially helpful.
It could disambiguate two similar interactions based on what happened
before or after. Such a model could be derived from a transition matrix.
We want to emphasize however that the transition probabilities as shown
here are biased by the chance of each behavior occurring individually. For
instance, solitary activities are more frequent than social interactions and
are therefore just by chance more likely to occur after any other event.
Consequently, the solitary columns contain relatively high values in every
row. A proper temporal transition model only encodes those relationships
that exceed (or fall short of) the level of chance occurrence [5]. The model
is then independent of the prior probability of each behavior individually.

In this thesis we refrain from using a temporal model for two reasons.
First, the temporal model has to be learned from behavior data and there-
fore only re�ects the relationships that were present or absent in that data.
The model can become invalid when the animals grow older or when we
use animals from another genetic background. We want our recognition
method to be applicable to data that exhibit di�erent temporal relation-
ships from the training data. Second, the sequential analysis of behavior
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and the discovery of abnormal temporal patterns is often part of the study
of animal behavior [20, 32, 144]. Incorporating a model of typical temporal
patterns in the measuring method and eventually encountering abnormal
temporal patterns can have precarious e�ects and may jeopardize the re-
sults of the behavior analysis.

4.2 Manual Annotations and Inter-Annotator Agreement

Up to now we have considered the manual annotations in the datasets
as the ground truth and have assumed that every video frame shows ex-
actly one behavior which is labeled as such. As we have discussed in Sec-
tion 2.1.2, these assumptions do not generally hold in practice. Sometimes
two annotators label the same frames di�erently. In this section, we assess
the inter-annotator agreement in our own dataset.

To estimate the agreement, we need to compare the annotations from
di�erent annotators for the same videos. Because the available datasets
have only one set of annotations, we asked three collaborating neuroscien-
tists to annotate additional videos. The videos are comparable to the RatSI
videos in terms of acquisition environment and animals, and the same be-
haviors are annotated. Note that at the time of this experiment, the RatSI
videos were not available yet.

We analyze the agreement among the three annotators on a frame-by-
frame basis as well as on an event-basis. We measure the overall agreement
in terms of the percentage of frames for which the annotators agree. Stud-
ies that report the annotator agreement typically report the percentage
agreement. In addition, we investigate whether the level of ambiguity is
di�erent for certain behavior categories. We further measure the tempo-
ral variations of annotated behavior events among the annotators. These
additional measures allow us to gain novel insights into the ambiguity of
social interactions.

4.2.1 Experiment

The participating annotators scored three videos, each with a length of 5
minutes (about 200 behavior events per video), containing rat social inter-
actions identical to the interactions in RatSI. The same behavior de�nitions
were followed (see Table A.1 in Appendix A for details). The instructions
that were given to the annotators emphasized the importance of precisely
scoring start and end times so as to avoid systematic delays. On the one
hand, labeling with high temporal accuracy is more time-consuming be-
cause the annotator often needs to seek backwards through the video in
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order to determine the precise start of an interaction. On the other hand, it
ensures that annotations, videos and features align perfectly in time, which
is required if the data is used for training a behavior classi�er. The anno-
tations were obtained using Noldus The Observer XT 12, with which all
annotators were familiar before the experiment.

4.2.2 Results

The results are broken down into three parts, each taking a di�erent per-
spective on the inter-annotator agreement. First, we look at the total agree-
ment among each pair of annotators – the most common measure for the
agreement. We then provide a novel analysis of the ambiguity of speci�c
behavior categories and �nally the temporal variations in the annotations.

4.2.2.1 Overall Agreement Among Annotators

Counting the frames on which annotators agree gives us a measure of
agreement in terms of an overall percentage. The large fraction of soli-
tary behavior in the videos, which we assume to be less ambiguous and
therefore easier to label in agreement with others, may dominate the over-
all percentage and hide from us insights into the most relevant behaviors:
the social interactions. To sketch a more comprehensive image, we isolate
the social behaviors and measure the agreement among them.

Lacking a ground truth that tells us when interactions occur in the video,
we rely on the given annotations to determine the relevant, social parts of
the videos. We take an inclusive approach and consider a frame to poten-
tially contain an interaction if at least one of the annotators has labeled
it as one. We thereby include the other and unknown labels because they
are mostly assigned to interactions rather than solitary activities. By this
criterion 67.5% of the frames are considered social behavior.
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Figure 4.5: Percentage of frames in which an annotator pair agrees, considering the
whole videos (left) or only potential interaction frames (right).



48 analysis of rodent social behavior in ratsi and crim13

We �rst look at the percentage of frames in which a speci�c pair of an-
notators agrees. Figure 4.5 shows, on the left, the ratio between agreement
and disagreement among all behavior categories including solitary activi-
ties and, on the right, the ratio among the social interactions. On average,
two annotators agree in 59.1% of the frames considering all behaviors and
in 39.3% of the interaction frames. The agreement on the social interactions
is considerably lower than on solitary behavior. Annotator pair (0,2) gen-
erally exhibits a lower agreement than the other two pairs which achieve
comparable percentages.

The percent agreement is subject to overestimation because it does not
take into account the chance level of agreement. In other words, two an-
notators that label a video with entirely random annotations would still
show a certain level of agreement. A popular measure that corrects for
chance level agreement is Cohen’s κ [23]. It is widely used to determine
the inter-annotator agreement in behavior studies. Cohen’s κ is computed
as the fraction of agreement that exceeds the level of chance agreement:

κ =
po −pe
1 −pe

. (4.2)

Here, po is the observed agreement which is equal to the percentages re-
ported in Figure 4.5, and pe is the expected chance agreement if the anno-
tators would randomly assign labels. If the observed agreement is equal
to the chance agreement, then κ = 0. Perfect agreement would result in
κ = 1.

The chance agreement is subject to the prior probabilities with which
each annotator picks a random label. These probabilities are computed
from the observed labels. If the perceived prior probabilities di�er between
the annotators, then this di�erence alone accounts for some fraction of
the disagreement. Cohen suggests to compute this fraction and report the
corresponding value κmax that can maximally be achieved under the dif-
ferent priors (thus < 1 if priors di�er). He describes the intuition behind
a potentially low κmax as an indication for imprecisely de�ned behavior
categories that leave room for di�erent interpretations. κmax is calculated
the same way as κ but instead of the observed agreement the best possible
agreement pmax that satis�es both observers’ priors is used:

κmax =
pmax −pe
1 −pe

with (4.3)

pmax =

K∑
i=1

min (PA(Fi ), PB (Fi )) (4.4)

where PA(Ei ) and PB (Ei ) are the prior probabilities which which the two
observers assign the category i to a random frame, respectively.
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Figure 4.6: Agreement in terms of Cohen’s κ, considering the whole videos (left) or
only potential interaction frames (right).

The values of κ and κmax for the annotator pairs in our experiment are
given in Figure 4.6. Compared to the percent agreement, the values are
lower but show the same pattern. Annotator pair (0,2) exhibits the lowest
agreement, while the other two pairs are on par. Notably, κmax is lower
when considering only the social interactions. Following Cohen [23], we
may argue that the social behaviors are prone to more subjectivity than
the solitary category.

4.2.2.2 Ambiguity of Interactions

Instead of considering each pair of annotators separately, we can also look
at agreement from another perspective and analyze the level of ambiguity
in the videos. To estimate the ambiguity we consider the annotators as
experts casting a vote on every frame. We can then count the frames for
which all, two or none of the annotators agree. When all annotators agree,
the frame can be considered clear and unambiguous. With one deviating
vote, there may be some doubt and ambiguity about the behavior. Finally,
if none of the annotators agree, each casting a di�erent vote, the behavior
in that frame is apparently di�cult to categorize.

Figure 4.7 illustrates the percentages of frames falling in each of the
three agreement categories. As before we compare the percentages among
all behavior categories with only the social interactions. Almost half of the
videos, 48% of the frames, is relatively clear and all annotators agree, while
there is some ambiguity in a third of the frames causing one annotator
to vote di�erently. Less than 20% are truly ambiguous. The parts of the
videos that show social interactions seem to be more ambiguous: omitting
the solitary behavior from the analysis decreases the portion in which all
annotators are in agreement to 34.6%. The portions in which the annotators
disagree partially and entirely increase to 41.7% and 23.7%, respectively.
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Irrespective of the considered behavior categories, in roughly 80% of
the frames at least two annotators decided for the same label. This demon-
strates that in a substantial portion in the videos there exists at least some
agreement about the behavior of the animals. Although some agreement
is no guarantee for having found a legitimate set of annotations, we value
this outcome positively as it shows that the visual information in the video
frames enables humans to recognize the behavior; information that can po-
tentially be exploited by a computational recognition method.

Until now we have used an aggregated measure of agreement, summa-
rizing both time and behaviors into one overall percentage. We now want
to draw a more detailed image and assess the agreement and the ambiguity
for speci�c interaction categories. For each category we look for interac-
tions that are scored by at least one annotator and then measure how of-
ten one or two other annotators agree. Because the interactions occur with
di�erent frequencies and durations in the videos, we normalize the agree-
ment for each category independently. The left plot in Figure 4.8 shows the
number of frames assigned to each category by at least one annotator. In
the right plot we display the three levels of agreement for each behavior.
Following and solitary not only occur most often, they also exhibit the

highest agreement. In 68% and 85% of the frames, respectively, at least one
other annotator also scored following or solitary. On pinning two annota-
tors agree more than 55% of the time, although there are only few frames
in which all three annotators agree (14%). For all other categories the an-
notators disagree more often than they agree. More than two thirds of the
frames are scored by only a single annotator at a time. In fact, one of the an-
notators never agreed on any allogrooming frame. Clearly, this annotator
had a di�erent interpretation of what constitutes allogrooming compared
to the other two.
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4.2.2.3 Agreement on Behavior Events and their Temporal Variations

As a �nal aspect of this inter-annotator agreement study, we want look at
the agreement among behavior events. In contrast to video frames, com-
paring events is a more complex matter. Suppose two observers have an-
notated the exact same interaction. Even if they both recognized the inter-
action and assigned the same behavior label, their view on when exactly
the interaction begins and ends may still vary. The question is when we
can consider two event annotations in time to be equivalent.

To get an intuitive idea about the di�erent levels of agreement of event
annotations, we show a number of examples in Figure 4.9. The examples
have been annotated with the same behavior label but they vary in the
amount of overlap. Here, we compute the overlap as the intersection di-
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Figure 4.9: Examples of annotations with varying overlap (intersection / union).
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vided by the union. That is, the number of frames for which the annota-
tions overlap divided by number of frames annotated by either observer.
Although this is only an illustrative exercise, it demonstrates the di�er-
ent types of temporal variations that we could encounter in our data. In
particular, we observe cases in which both start and end time are delayed
(examples with overlap 0.4 and 0.6), and cases in which one annotation is
a segment of another (examples with overlap 0.2 and 0.8). We further �nd
perfect alignment with overlap 1 but also almost disjoint events without
considerable overlap.

When computing the average agreement for event annotations, the de-
sired overlap is a free parameter. We vary this overlap threshold to sketch
the complete image. Figure 4.10 shows the percentage of events that are
considered equivalent under an increasingly restrictive overlap criterion.
The percentages relate to the total number of events (sum of both annota-
tors), listed in Table 4.1.

Naturally, the number of events that are successfully matched decreases
as the overlap criterion becomes more restrictive. In accordance with our
�ndings at the frame-level, solitary and following events achieve the high-
est agreement. Allogrooming events are rarely annotated by two observers
and essentially do not coincide with the annotations of the third observer.
For most behaviors except solitary, following and pinning, more than half
of the annotated events do not match any event of another observer.

4.2.3 Conclusion

All in all, the results from this section demonstrate that rat social interac-
tions exhibit a considerable amount of ambiguity that makes annotation a
challenging task. Although in total more than three quarters of the videos
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Table 4.1: Number of annotated events per annotator.
Annotator: 0 1 2
Allogrooming 2 8 74
Approaching 62 43 138
Following 135 88 79
Moving away 23 48 132
Nape attacking 21 26 77
Pinning 26 30 28
Social Nose Contact 15 24 67
Solitary 132 77 84

are labeled in agreement by at least two of the three annotators, some
of the interactions, such as allogrooming, show a remarkable low level of
agreement. We want to note that the annotators that participated in this
study all had experience with rat social behavior but had only little train-
ing in annotating it according to the given de�nitions. Thorough training
and communication among the annotators would improve the consistency
of the annotations within the group and likely lead to higher agreement
scores. Nonetheless, we were able to identify three factors responsible for
the disagreement among annotators: a) di�erent interpretation of what
constitutes a behavior category and possibly vague boundaries, b) varying
attention to detail and the tendency to lump multiple interactions in im-
mediate succession into one, and c) ambiguity of the exact beginning and
end of an interaction.

4.3 Feature Representation

When human annotators score behaviors in a video, they make labeling
decisions by interpreting the visual information in the images. Depend-
ing on the speci�c behavior they may consider the animals’ pose, their
relative position, and their movements. In this section we aim to verify
that visual information extracted computationally from the video images
indeed aligns with the behaviors as scored by the annotator. This investi-
gation is a �rst step to demonstrate which interactions may be recognized
automatically based on tracked animal locations and body parts.

Speci�cally, we analyze the distribution of the feature values extracted
from the tracking data in the datasets. Comparing the distribution within
and across interaction categories gives us an idea whether those features
are meaningful for automated classi�cation. To this end, we �rst conceptu-
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ally group the interactions into two groups: trajectory-related and contact-
related interactions. Trajectory interactions are mainly expressed in terms
of whole-body motion, that is the movements of the rats through the space
and in relation to each other. Approaching and following are examples for
trajectory-related interactions. Contact interactions express coordinated
motion or manipulation of speci�c body parts. In a nape attack, for in-
stance, a rat attempts to reach the neck area of the other rat with its snout
or paws to bite and pull the fur. Hence, the relative positioning and de-
tailed motion of body parts convey crucial information for di�erentiation.
Table 4.2 lists the interactions assigned to each cluster.

Note that the chosen grouping is based on the visual properties of the
behaviors rather than their function in an ethological sense. From a func-
tional perspective the two contact-related interactions nape attacking and
sni�ng, for example, ful�ll di�erent purposes and are therefore dissimilar.

Table 4.2: Clustering of trajectory- and contact-related interactions.
Trajectory Contact

RatSI CRIM13 RatSI CRIM13
Approach Approach Allogrooming Attack
Following Chase Nape attacking Copulation

Moving away Circle Pinning Sni�
Walk away Social nose contact

4.3.1 Trajectory-related Interactions

We �rst consider trajectory interactions such as approaching, moving away
or following. During such interactions the animals move in order to get
closer or further away from each other or to maintain a certain distance
while moving along a similar path. They di�er in how the distance between
the animals changes over time, in the velocity with which they move and
in the orientation relative to each other. We will �rst show how to derive
these basic trajectory features from the tracking data and then analyze
whether their values coincide with what we expect for each interaction.

The tracked animal locations that are provided with the datasets allow
us to compute velocity and orientation of each rodent and the distance
between them. Let us denote the position of a body point at time t by
p(t) =

[ px
py

]
. To identify a speci�c body point of an animal (c for center

point, n for nose point, b for tail-base point) we indicate the body point in
subscript and the animal in superscript. For example, the center point of
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Figure 4.11: Relative orientation between two rodents captured by the relative an-
gle φ and relative heading direction γ .

animal 1 is denoted by p1
c (t). For the sake of clarity we omit the time (t)

unless it is necessary to distinguish between values of di�erent frames.
For the distance between the animals we consider the Euclidean distance

between their center points, given by

dcc =
����p1

c −p
2
c

���� . (4.5)

The change of the distance over time is determined by the di�erence of the
values between consecutive frames divided by the time between frames ∆t :

d ′cc (t) = (dcc (t) −dcc (t − ∆t)) /∆t . (4.6)

Velocity is estimated by the displacement of the center point between two
consecutive frames:

vc (t) =
����pc (t) −pc (t − ∆t)���� /∆t . (4.7)

Similarly we can compute distances among any combination of body
points as well as velocities of body points other than the center. Note
that the velocity features involve a division by the time between two
frames, which makes the features invariant to the video frame rate of the
considered dataset. RatSI and CRIM13 videos are recorded at a rate of
25 fps.

The orientation of the animal informs us about the direction in which
it is facing. Choosing the right reference frame to express this direction is
particularly important for interactions. For approaching and moving away,
for example, it is the orientation relative to the other animal that conveys
the most essential information. Global reference frames such as the image
axes or the cage walls are typically less relevant. We consider two features
to represent the relative orientation, namely: the relative angle φ and the
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relative heading direction γ . As depicted in Figure 4.11, φ is the absolute
angle between the two animals’ head vectorsh1 andh2. It ranges from 0 to
180 degrees when the animals are facing the same or opposite directions,
respectively. The head vectors are derived from the center and nose points,
that is, hi = pin −pic , i ∈ {1, 2}.

The relative angle φ captures the orientation from a global perspective
but it does not convey information from the perspective of a speci�c ani-
mal. In contrast, the second orientation feature, γ , captures where in one
animal’s environment the other animal is (e.g., in front, behind, next to).
It is invariant to the orientation of the other animal and can hence disam-
biguate between towards or away from another animal. The values of γ
cover the full 360 degree circle and thus also distinguish between left of
and right of. We can eliminate the left/right notion from the feature by
computing cos (γ ) which then ranges between -1 and 1, and is symmetric
with respect to the head vector h.

Note that the head vector cannot be derived from the nose point in
CRIM13 because only the center point location is tracked. For CRIM13 we
estimate the head vectors from the direction of movement, assuming that
the mice typically walk forward as suggested by the dataset authors [18].
The disadvantage of estimating orientation from movement is that it is im-
possible if the mouse is not or barely moving. In addition, tracking noise
decreases the accuracy of the estimate especially during slow movements.
We compute the direction of motion from the head vector that is now given
by the displacement vector of the center point: h = pc (t) −pc (t − ∆t). To
avoid unreliable orientation estimates, we monitor the length of the dis-
placement vector, which is proportional to the velocity of the animal, and
skip the computation if the velocity is lower than a third of the animal
length per second. We �ll in the missing orientation values by interpolat-
ing linearly between the last known orientation and the moment when the
animal is moving again.

Let us now look at what values the features take on during trajectory-
related interactions. These observations are based on behavior labels given
by a human annotator. We calculate the probability density function of
the values along each feature dimension using a kernel density estimation
with a Gaussian kernel [96]. Intuitively, the density function can be seen
as a continuous histogram over the occurring values. In Figure 4.12 we
show the density estimates for the distance dcc , velocity vc and change
of distance d ′cc . The change of distance is the most discriminative feature
of the three, showing that the distance typically decreases during an ap-
proach, increases when moving away, and remains reasonably unchanged
during following/chasing as well as circling. It seems that neither distance
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Figure 4.12: Density estimation of distance and velocity features for each
trajectory-related interaction, normalized to integrate to one.

nor velocity convey much information to di�erentiate between the trajec-
tory interactions. Nonetheless, both are likely to contribute to discriminat-
ing them from other actions, such as solitary activities which are often
performed at a larger distance from each other. We further observe a dis-
tinct di�erence in scale between the datasets. Both, velocity and change of
distance, are approximately twice as large in CRIM13 than in RatSI. The
scale is largely determined by the video resolution and distance from the
camera but also by the animal’s size and natural velocity.

In Figure 4.13 we plot the angle γ and the distance dcc along time of
100 random interactions per category in a polar coordinate system. The
0◦ angle corresponds to toward the other animal, while 180◦ is away from
it. The outer circle diameter corresponds to the diagonal dimension of the
observation cage (the maximum distance between the animals). The start
of each interaction is marked by a triangle.

We observe several patterns emerge, matching our expectations of the
nature of the interactions. The approach trajectories move from the out-
side to the inside, decreasing the distance between the animals over time.
The orientation converges toward the other animal. In CRIM13 the vari-
ance among the orientation values seems larger. Similarly, following and
chasing display a clear pattern toward the other animal maintaining a
smaller distance than during an approach. Moving and walking away are
the conceptual opposites of approaching and indeed show opposite trajec-
tory patterns. They start at the center and move outside, increasing the
animals’ distance, while the orientation is mostly away from the other an-
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Figure 4.13: Trajectories of interactions (100 per category randomly selected) in po-
lar space spanned by orientation feature γ (angle) and animal distance
dcc in pixels (radius). The approximate animal length (nose to tail-base)
is in RatSI: 100 px, CRIM13: 150 px.

imal. Again the variance among distance and orientation values is larger
in CRIM13 and the interactions appear generally longer. In RatSI, moving
away interactions seem relatively short and end before a large distance be-
tween the animals has been established. The circling interaction is only ob-
served in CRIM13 and is scored when a mouse is moving in circles around
the other mouse. The orientation feature re�ects the circles clearly by be-
ing constrained to either the left or the right of the other animal, depend-
ing on whether the mouse moves in clockwise or anti-clockwise direction.
During circling it stays close to the other mouse. The histograms of the
values of γ in Figure 4.14 support our observations of the stereotypical
orientations during the interactions.

Besides the dominant patterns we notice a number of exceptions such as
the few approach examples in RatSI that appear to be oriented away from
the other animal and yet move closer. Such outliers are caused by tracking
errors, for instance if the nose and tail-base points are confused and thus
the orientations wrongly estimated, but also by annotation errors, if the
animal that is being approached is erroneously labeled as the approaching
animal. CRIM13 exhibits a generally larger variance in orientation features.
This may be due to the fact that for CRIM13 the orientation of each mouse
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Figure 4.14: Histogram of the orientation feature γ per trajectory-related interac-
tion, normalized to integrate to one.

has to be estimated from the direction of movement which is generally less
robust than deriving it from the center and nose points.

Overall, the patterns we see emerging from the examples are intuitive.
The relative orientation and the change in distance appear to capture the
essence of the trajectory interactions. Nonetheless, there are still overlap-
ping patterns, for instance between approaching and following, which will
make it harder to distinguish between the two automatically. In addition
to the overlap in feature values, the automated recognition needs to deal
with the unknown temporal boundaries. In the shown examples we were
given the exact start and end of the interactions by the human observer.
During automated recognition the start and end points have to be deter-
mined jointly together with the interaction category.

4.3.2 Contact-related Interactions

We now turn to the representation of contact-related interactions such as
sni�ng and nape attacking. Such interactions have in common that they
are performed at a close distance which makes them inherently di�erent
from the trajectory-related interactions. Rather than through whole body
trajectories, the rodents interact using speci�c body parts including snout
and paws.
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RatSI provides the locations of three distinct body points: the nose, cen-
ter and tail-base. We aim to express the relevant aspects of contact interac-
tions in terms of the distances between those points and the change over
time. In CRIM13, the lack of additional tracked body points prevents us
from computing contact-related features.

We compute two body point distances, analogous to the center point
distance in Section 4.3.1. As illustrated in Figure 4.15, we derive the Euclid-
ean distance between the two nose points dnn and the distance between
the nose and the tail-base dnb from the corresponding tracking points:

dnn =
����p1

n −p
2
n

���� and (4.8)
dnb =

����p1
n −p

2
b

���� . (4.9)

The change of the distances over time is calculated as the di�erence in
consecutive frames divided by the time between frames ∆t :

d ′nn(t) = (dnn(t) −dnn(t − ∆t)) /∆t and (4.10)
d ′nb (t) = (dnb (t) −dnb (t − ∆t)) /∆t . (4.11)

We further compute the velocity of the nose point to capture di�erences
between interactions with slow head motions, such as social nose contact,
and faster motions such as nape attacking. Similarly to the center point
velocity (Equation 4.7), the nose velocity vn is given by

vn(t) =
����pn(t) −pn(t − ∆t)���� /∆t . (4.12)

Figure 4.15: Body point distances dnn and dnb , and spine overlap ratio rspine.

To be able to detect overlapping bodies, we extract a simpli�ed spine
structure for each rodent from the three body points. The spine consists of
two line segments: the lines connecting the tail-base with the center and
the center with the nose. In Figure 4.15 the spines of the two rats on the
right are indicated by solid lines. To capture the extent of overlap as well
as the contact location, we determine the point of intersection between the
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two spines. We represent the intersection point as coordinates along each
one-dimensional spine, which together form the two-dimensional vector
r spine. The coordinates are assigned values in the range [0, 1], where 1 cor-
responds to the center point and 0 to either end of the spine (nose and
tail-base). The values between are interpolated linearly. If the spines do
not intersect, r spine = [

0
0 ]. If the spines intersect more than once, the vec-

tor with the higher mean value is taken.
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Figure 4.16: Density estimations of body point distances and their change in time,
relative orientation and nose velocity computed for contact interac-
tions in RatSI, normalized to integrate to one.

Let us look at the values of these features for the contact interactions in
RatSI. To get an idea whether the features capture the di�erences between
interactions, we compare the density estimates among the interactions in
Figure 4.16. We �nd a few properties that seem to distinguish interactions
from others. Pinning instances for example frequently exhibit high values
in the relative orientation φ and the nose-nose distance. Nape attacking in
contrast occurs more often with a small nose-nose distance and a larger
nose-tail distance. That is in line with the fact that the attacker attempts
to reach the neck area of the other rat with its snout. These attacks seem
to happen at slightly higher nose velocities compared to the other inter-
actions. The change of distance does not appear to capture any distinct
di�erences.

We examine the values of the spine overlap vector in a joint histogram
of both vector elements in Figure 4.17. The values are sorted into six
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Figure 4.17: Histograms of two-dimensional spine intersection vector r spine for
contact interactions in RatSI.

equidistant intervals in each dimension. The darker the square, the more
frames fall into the corresponding value range. The histograms include
only frames with overlap, that is when r spine , [

0
0 ]. Allogrooming and

social nose contact exhibit only minor overlap close to nose or tail. Nape
attacking clearly shows more overlap, mostly concentrated half-way along
either spine segment and with fewer frames in the lower right corner of
the matrix. Frames located in this corner would show the attacking rat
covering with its body center either the head or the tail of the other rat;
neither of which would classify as a nape attack. Lastly, the overlap values
for pinning are more spread out and suggest that a number of di�erent
overlap postures appear in the videos. Given that there are relatively few
pinning interactions in RatSI, it seems to be challenging to identify a
single, characteristics pinning posture using the spine overlap.

All things considered, we observe fewer clear patterns in the features
that distinguish the contact interactions compared to the trajectory inter-
actions. The reason is two-fold. First, the three body point locations are
less suited to represent contact interactions. The paws for example are not
tracked, yet play a central role in some of the interactions including nape
attacking. Tracking only three body points may prove insu�cient for reli-
ably recognizing contact interactions automatically. Second, contact inter-
actions occur per de�nition at close distances and with occlusions. These
are challenging situations for the tracking algorithm which in turn is likely
to be less accurate in locating the nose and tail-base points. These inaccura-
cies have a particularly strong e�ect on the orientation and spine features,
potentially rendering them unreliable during contact situations.

Although we could not �nd features that exhibit as clear distinctions
as for the trajectory interactions, we are limited by our capabilities to vi-
sualize high dimensional data. A classi�er, which operates in the higher
dimensional space of all features together, may still be able to model the
interactions and facilitate automated recognition.
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4.4 Conclusion

We have analyzed the RatSI and CRIM13 datasets regarding aspects related
to learning, applying and evaluating rodent interaction classi�ers. These
aspects highlight some of the challenges that researchers face in develop-
ing novel classi�cation methods. For instance, an unbalanced prior distrib-
ution of the behaviors is a common property of these datasets, not only in
our data but also in related work [18, 48]. The main concern is the collec-
tion of su�cient training examples of the rare behaviors, and a fair eval-
uation that prevents the more frequent behaviors to dominate the error
measure. Less attention is given to the fact that di�erent datasets may have
di�erent prior distributions, that the priors may change over time, and that
they are hard to estimate for new data for which no annotations are avail-
able. An investigation of the e�ects of varying prior distributions on the
accuracy of automated annotation is left for future work.

The prior distribution is not the only variable property. The two exam-
ined datasets also showed substantial variations in the temporal and spatial
extent of interactions, as well as the scale and variance of feature values.
These variations are due to the di�erent species, the cage, the acquisition
setup, the camera resolution and the tracking algorithm. To be able to clas-
sify rodent interactions in arbitrary input videos, all combinations of these
variations need to be incorporated into one common classi�cation frame-
work. The number of possible combinations alone limits the possibility to
design such a framework manually. We are more likely to succeed with a
general framework that automatically learns how to abstract from varia-
tions such as spatial scale. This approach appears to work well for other
visual inference tasks such as object recognition [71] and human action
recognition [131].

Lacking such a common framework yet, we have introduced meaning-
ful numerical representations for movements and poses that are relevant
for modeling rodent interactions. These representations form the basis for
the automated annotation methods that we develop over the course of the
following chapters. For trajectory-related interactions the change of dis-
tance and the relative orientation appear to be highly informative. The
contact-related interactions seem more di�cult to model from only a few
body point locations. One of the challenges is the lower tracking quality
in those contact situations which cause the little information that is avail-
able to be particularly inaccurate. We want to investigate the in�uence of
the tracking quality on the classi�cation accuracy in more detail and will
therefore conduct a computational experiment involving varying degrees
of tracking quality in the next chapter.
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Movement and pose features derived from body point locations promise
to be meaningful for automatic classi�cation of rodent interactions. Track-
ing these body points throughout the videos is, as we discussed in Sec-
tion 2.2.1.2, a challenging task. Occlusion and the similar appearance of
the animals add to the complexity and can cause tracking errors in the
form of misidenti�cation of animals, confusion of body parts as well as
inaccurate localization of those parts.

The quality of the tracking data is linked to the quality of the features.
Tracking errors propagate through the feature computation where they
potentially cause noisy and inaccurate estimations of, for example, the an-
imal’s pose, its orientation or velocity. Eventually, they may lead to misclas-
si�cations of the interactions with potential consequences for the behavior
analysis.

In this chapter we aim at unraveling the e�ect of tracking quality on clas-
si�cation accuracy. We investigate the e�ect of common tracking errors,
including misidenti�cation and inaccurate localization, on the accuracy of
the overall classi�cation and on the recognition of speci�c interactions. To
this end, we systematically vary the tracking quality in two orthogonal
directions. We begin by incrementally correcting two types of tracking er-
rors in Section 5.1. Then in Section 5.2, we derive three feature sets from
the locations of a varying number of body points. Finally, we compare the
classi�cation performance using o�-the-shelf classi�ers in Section 5.3.

The result of this analysis separates the in�uence of tracking errors on
the classi�cation accuracy from other classi�cation errors. This yields im-
portant information for future studies because it highlights the margin for
improvement of the classi�cation beyond solving the tracking task. It can
help us to identify and prioritize the classi�cation challenges to address in
the future, regardless of the preferred tracking algorithm.

5.1 Eliminating Systematic Tracking Errors in YR

We investigate the e�ects of tracking errors and therefore need to isolate
tracking from other factors that may in�uence the classi�cation accuracy
such as label noise. The YR dataset is better suited than RatSI for this task

65
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(a) Confusion of nose and tail-base points (b) Occlusion during allogrooming

(c) Inaccurate pose due to re�ection on cage
wall

(d) Inaccurate pose due to self-occlusion

(e) Occlusion during pinning (f) Occlusion during pinning

Figure 5.1: Examples of tracking errors. Body points: 4 (nose), © (center),
� (tail-base).
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because YR consists of clean annotations and an equal number of selected
clips of every behavior.

YR provides tracking data of three points on each animal body: the nose
point, the center of mass of the body contour and the tail-base. We incre-
mentally eliminate two types of tracking errors leading to three versions of
the same dataset with varying tracking quality. We denote the initial, un-
corrected version as YR. This version contains errors in the assignment of
nose and tail as well as animal identities. While wrong identities may prop-
agate through large portions of a video, a nose-tail swap is automatically
corrected by the tracking algorithm as soon as the animal starts walking.
This correction is based on the assumption that if a rat moves from one
place to another, it does so by moving forward. Nose-tail swaps therefore
occur predominantly in occlusion situations and last for only a short pe-
riod of time. Occlusion can also lead to inaccurate localization of the body
points. To give an overview of scenarios that may cause errors, we show a
few uncorrected tracking examples in Figure 5.1.

As a �rst correction step, we eliminate errors in the identity assignment
by manually correcting identity swaps. Identities are not changed during
fast, close-contact and occlusion situations. As the body point positions are
often misplaced in those situations, it is impossible to assign the correct
identities without correcting the positions �rst (e.g., see Figure 5.1e). We
denote the dataset version with corrected identities as YR-ID.

In the second elimination step (YR-ID+Loc), we additionally correct the
body point locations. As mentioned earlier most of the corrections are nec-
essary in occlusion situations (e.g., Fig. 5.1b, 5.1e and 5.1f). The correction
of body point locations eliminates nose-tail swaps, yields more reliable ori-
entation values, and generally leads to smoother trajectories as noise in the
positions is reduced.

Note that this correction process involves a substantial amount of man-
ual work. The correction of the body point locations in particular takes
multiple times longer than the duration of the videos as every video frame
has to be inspected. Manual correction does not present a solution for in-
creasing the tracking quality in practice.

5.2 Extracting Features from the Dataset Versions

We derive three feature sets with increasing level of detail as illustrated
in Figure 5.2. In the �rst set, CP, we assume we are given only the center
point positionpc . This is the case in the CRIM13 dataset [18] but also other
works take this approach [147]. Features we can derive from a single point
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Figure 5.2: Tracking a rodent with increasing level of detail.

include velocity vc , the distance between the animals dcc and the change
of that distance d ′cc .

For the second set, CP+Ori, we derive each animal’s orientation from the
direction of its movement. This allows us to calculate the relative orienta-
tion between the animals in terms of the absolute, relative angle φ and the
relative heading direction cos (γ ) as described in Section 4.3.1. Estimating
the orientation from motion is sometimes unreliable as it requires robust
tracking of the center point and is unavailable if the animal is not moving.
Sidewards or backwards motion can also impair orientation estimates.

The third set, Full, solves the limitations of the CP+Ori set by exploiting
the three body point locationspb ,pc andpn . Deriving the orientation from
the nose and center points is more robust against small displacements due
to noise and is possible even if the animal is immobile. Moreover, we can
incorporate additional body point distances and estimate points of contact
in occlusion situations. We include the nose-nose distance dnn , the nose-
tail distance dnb , their derivatives d ′nn and d ′nb , the velocity of the nose
point vn and the spine intersection vector r spine. Refer to Section 4.3 for
details on the feature computation.

5.3 Classi�cation Experiments

To analyze the links between feature quality and recognition accuracy, we
examine the e�ects of tracking errors alone (using the Full feature set) as
well as in combination with the di�erent feature sets. Let us �rst formulate
the classi�cation task.
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5.3.1 Classifying Interactions from Video Frames

We formulate the task of recognizing rodent behavior in videos as a mul-
ticlass classi�cation problem. The goal is to classify each video frame into
one behavior category. LetX be the domain of possible feature vectors and
Y a �nite set of K behavior categories. We further denote the feature vec-
tor of frame i by xi ∈ X and the corresponding label by yi ∈ Y. The task
of the classi�er is to predict for a given feature vector x the correct label y.
Note that although the YR dataset would allow classifying the video clips
directly instead of individual frames, we do not have this option in practice
where videos are not segmented into separate clips per interaction.

To �nd a suitable classi�er for our analysis, we compare seven o�-the-
shelf classi�ers and then stick to one classi�er for the remaining experi-
ments in this chapter. We compare a large range of classi�ers to be able
to eliminate the speci�c classi�cation model from the measured e�ect:
Linear Discriminant Classi�er (LDC); Quadratic Discriminant Classi�er
(QDC) (as in [145]); Support Vector Machines with Gaussian (SVM-RBF)
and linear (SVM-Lin) kernels (as in [42]); LDA with k-Nearest-Neighbors
(LDA+kNN); Random Forest (RF) (as in [48, 55]); and a Gaussian Mixture
Model (GMM). This selection is based on related work complemented by
basic classi�ers with di�erent approaches such as linear class separation
(LDC), neighborhood sampling (kNN), and a generative model (GMM). The
optimal parameters of the classi�ers are selected by cross-validation, de-
scribed below.

Classi�cation accuracy can often be improved by scaling all feature di-
mensions to a common range [78]. To normalize scale di�erences, each
feature is independently scaled to zero-mean and unit-variance based on
the training data.

5.3.2 Measuring the Classi�cation Accuracy

We assess the recognition accuracy in terms of the classi�cation perfor-
mance per interaction. We mainly look at the F1 score and, if appropriate,
at precision, recall and confusions between speci�c classes. The F1 score
is the harmonic mean of the precision (true positive predictions divided by
total number of positive predictions) and recall scores (true positive predic-
tions divided by the number of actual occurrences). The class scores range
from 0, with no correct predictions, to 1 for the correct prediction of all
frames. To obtain a single measure of performance for the classi�er, we av-
erage the F1 scores over all interaction classes leading to a �nal score in the
range from 0 to 1. Averaging over classes as opposed to the total number of
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frames (equivalent to the ratio of correct frames) assigns equal importance
to all interaction classes and prevents the score from being dominated by
the most-occurring interactions [72]. Hence it is better suited for datasets
with interactions that occur with di�erent frequencies.

To obtain a robust performance measurement, we apply a 5-fold cross-
validation scheme. The folds correspond to the �ve videos in YR from
which the clips have originally been selected. Creating the folds in this
way prevents the contamination of the evaluation data with data from an-
imals that are also contained in the training set. Hence, the performance
is always measured on unseen animals. We report the mean and standard
deviation of the F1 score across the folds.

In each of the �ve validation iterations, we perform another cross-valida-
tion with the goal to �nd the optimal classi�er parameters. Among the four
training videos, we repeatedly leave one video out and select the parame-
ters with the highest average performance. We then retrain the classi�er
on all four training videos using the selected parameters.

5.4 Results

The comparison of the classi�ers (Table 5.1) shows that all seven classi�ers
perform comparably on each dataset version. The di�erence between the
worst and best classi�er among each version is approximately two stan-
dard deviations whereas the di�erence between the worst and best track-
ing is approximately 4-5 standard deviations for every classi�er. Given the
range of classi�ers tested, this emphasizes that feature quality, rather than
the classi�er, largely determines the performance in this experiment setup.
We further see in Table 5.1 that fewer tracking errors lead to higher aver-
age accuracy. With each additional error eliminated, the score increases on
average by 0.08.

The remaining experiments are conducted with the classi�er that per-
forms best on YR-ID+Loc: SVM-Lin. Although RF achieves comparable ac-
curacy, we choose SVM-Lin over RF because it has fewer parameters to
tune and was less sensitive in the model selection. In all training folds, the
same value was selected as the optimal parameter (C = 10).

5.4.1 E�ect of Tracking Errors

Looking at the F1 scores per interaction in Table 5.2 and the confusions in
Figure 5.3, we see that not all interactions are a�ected by tracking errors
in the same way. The accuracies are generally high for solitary actions and
allogrooming, the two classes with the highest number of frames. The other



5.4 results 71

Table 5.1: The average per-class F1 scores achieved by the six classi�ers on the
three dataset versions with increasing degree of tracking quality. Sorted
by performance on YR-ID+Loc.

YR YR-ID YR-ID+Loc

Classi�er mean std mean std mean std
SVM-Lin 0.55 0.03 0.61 0.05 0.73 0.04
RF 0.58 0.04 0.68 0.04 0.73 0.05
SVM-RBF 0.59 0.04 0.65 0.05 0.71 0.04
QDC 0.54 0.06 0.61 0.04 0.70 0.03
LDA+kNN 0.52 0.04 0.61 0.03 0.69 0.03
GMM 0.52 0.05 0.61 0.05 0.67 0.04
LDC 0.50 0.04 0.55 0.03 0.66 0.04

contact-related interactions, nape attacking, pinning and social nose contact
are not recognized well in the YR version but improve gradually as errors
are corrected. The largest confusions occur among the contact-related in-
teractions. Trajectory-related interactions on the other hand achieve com-
parably good accuracy even with the lowest tracking quality. Let us look
at the improvements made through each correction step separately.

The correction of identity swaps (YR→ YR-ID) leads to a major improve-
ment of the recall of social nose contact by eliminating more than half of
the confusions with allogrooming (48.4%→ 19.8%). A number of small im-
provements across all classes lead to a higher average F1 score at both
frame level (+0.07) and class level (+0.06).

Correcting the body point locations (YR-ID→ YR-ID+Loc), and thereby
also the orientation estimations, leads to considerable improvements. They
are largest for the contact-related interactions where we see an increase in
F1 score of 0.21 for nape attacking, 0.23 for pinning and 0.16 for social nose
contact. Confusions among those classes are reduced but yet remain sub-
stantial with values between 11.4% (pinning → nape attacking) and 22.6%
(pinning→ allogrooming).

On the other hand, confusions between the trajectory-related interac-
tions are largely eliminated. A few mistakes remain between approaching
and following (5.4% and 7.0%) as well as between moving away and solitary
(2.5% and 9.4%). These have a similar cause. Approaching often evolves into
following but the transition is not clearly de�ned and may vary among an-
notators and every occurrence. We see the same e�ect for moving away
where the transition to solitary is not always obvious. Misclassi�cations
of this type cannot be resolved entirely as they are linked to the inter-
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Prec. Recall F1 #
Allogrooming 0.75 0.86 0.80 7480
Approaching 0.60 0.72 0.65 699
Following 0.67 0.73 0.70 1252
Moving away 0.51 0.66 0.58 641
Nape attacking 0.22 0.25 0.23 621
Pinning 0.37 0.27 0.31 1780
Social nose contact 0.44 0.22 0.30 2083
Solitary 0.96 0.92 0.94 4026
Avg. frames 0.69 0.71 0.69 18582
Avg. classes 0.57 0.58 0.56 8

(a) Per-class results: YR

Prec. Recall F1 #
Allogrooming 0.85 0.89 0.87 7523
Approaching 0.64 0.75 0.69 699
Following 0.69 0.66 0.67 1231
Moving away 0.53 0.75 0.63 641
Nape attacking 0.23 0.21 0.22 601
Pinning 0.49 0.31 0.38 1769
Social nose contact 0.55 0.62 0.58 1912
Solitary 0.97 0.92 0.94 4026
Avg. frames 0.76 0.77 0.76 18402
Avg. classes 0.62 0.64 0.62 8

(b) Per-class results: YR-ID

Prec. Recall F1 #
Allogrooming 0.89 0.90 0.89 7560
Approaching 0.72 0.76 0.74 699
Following 0.81 0.80 0.81 1252
Moving away 0.72 0.80 0.76 641
Nape attacking 0.37 0.52 0.43 621
Pinning 0.64 0.59 0.61 1780
Social nose contact 0.75 0.72 0.74 2083
Solitary 0.97 0.92 0.94 4026
Avg. frames 0.83 0.83 0.83 18662
Avg. classes 0.73 0.75 0.74 8

(c) Per-class results: YR-ID+Loc

Table 5.2: Classi�cation performance of SVM-Lin for di�erent levels of tracking
quality and Full feature set.
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Figure 5.3: Confusion matrices for di�erent levels of tracking quality.
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annotator agreement: depending on the annotations with which the pre-
dictions are compared, the error may vary.

Overall, the F1 score increases by 0.07 when averaged over frames and
by 0.12 when averaged over classes.

5.4.2 E�ect of Feature Set

We now also include di�erent feature sets in our analysis. We examine
every combination between the three dataset versions (tracking quality)
and the three feature sets. The F1 scores averaged over the evaluation folds
are reported in Figure 5.4.

Considering the rows in the matrix, there is an upwards trend in per-
formance with increasing tracking quality irrespective of the feature set.
Again, this highlights the strong e�ect of tracking errors on the classi�-
cation performance. Moreover, the performance also increases along the
columns: richer feature sets improve the performance. The gain is negligi-
ble for the low quality tracking, but is substantial with the tracking errors
eliminated. Clearly, adding more features only pays o� in better perfor-
mance if they are computed from reliable tracking data.
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Figure 5.4: The average per-class F1 score achieved by SVM-Lin in all combinations
of tracking quality and feature sets. In parentheses: standard deviation.

5.5 Cross-Quality Experiment

In the preceding experiments, we have trained the classi�er and evaluated
its performance using data with the same level of tracking quality. Good
quality data has shown to be essential for accurate classi�cation. Obtain-
ing such high quality data currently still involves manual corrections and
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is therefore time-consuming. Hence, an interesting question is whether
a classi�er trained with good quality data is also able to recognize inter-
actions in data with lower tracking quality. This would allow us to train
a classi�er after a one-time correction e�ort that could then be used on
novel data without the extra e�ort.

We train the SVM-Lin classi�er with the corrected data from YR-ID+Loc

and evaluate its performance on YR and YR-ID. In both cases we fail to
achieve competitive performance. The average F1 score is 0.45 (0.06 std)
when evaluated on YR and 0.59 (0.09 std) on YR-ID. Both scores are lower
than in the corresponding same-quality experiments (YR: 0.55, YR-ID: 0.61).
This suggests that we do not bene�t in practice from corrected, clean fea-
tures as long as we cannot guarantee that we can generate them without
expensive, manual intervention.

5.6 Discussion

All in all, we have shown that eliminating tracking errors leads to better
classi�cation. This pattern occurred for all tested classi�ers, which sug-
gests that the e�ect is indeed inherent to the underlying data and not to
the classi�er.

In contrast, pose features that are derived from unreliable tracking data
have no positive e�ect on the performance. Furthermore, tracking needs
to be equally reliable both in training and for classi�cation. In particular,
manual correction of training data requires the same corrections to be per-
formed for every experiment in practice. Only under the condition that
reliable tracking is available can pose and orientation features enrich the
representation of interactions and allow for more accurate classi�cation.

Improvements from the corrections are most visible for contact-related
interactions, which are characterized by distinct relative poses. Trajectory-
related interactions, however, can be recognized using features derived
from only a single body point. Nonetheless, the accuracy improves when
the orientation is estimated from multiple body points instead of from the
direction of motion as the former is more robust and also possible when
the animal is immobile.

In our systematic analysis, we found that contact interactions are
recognized less accurately than trajectory interactions. Despite the
improved tracking and pose features, contact interactions remain partially
ambiguous to the classi�er. We conclude that the features that we derive
from three body points are insu�cient to facilitate the distinction. We
are con�dent that it is possible to achieve better performance with a)
more advanced tracking techniques addressing the challenging occlusion
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situations and b) specialized features that capture the rat’s body in more
detail including the paws and �ne-grained motion.

The results of this chapter motivate two choices that we make with re-
spect to the investigations in the following chapters. First, given that the
focus of this thesis is the learning of classi�cation models with reduced
manual e�ort, tracking and feature design lie beyond our scope. With this
in mind, we will consider the classi�er in the following chapters as a black
box that may be replaced by a classi�cation algorithm that uses any suit-
able set of features. Second, considering that we are currently not able to
correctly distinguish many of the contact interactions, we will group these
interactions in the following chapters into one common contact class. This
allows us to concentrate on the learning challenges in absence of artifacts
from insu�cient features.



6Variations in Rodent Social Behavior and the
Implications for Cross-Dataset Classi�cation

In the previous chapter we showed that the quality of the tracking data
has a direct e�ect on the classi�cation performance. We have also seen
that tracking is not the only factor involved. The choice of features as well
as ambiguity among di�erent interactions both limit the classi�cation ac-
curacy.

Now we address another aspect that may in�uence the accuracy: the
variation of how rodents perform interactions. These variations are partly
natural, partly arti�cially induced, for example by stimulating certain be-
haviors of interest or by using only animals of a speci�c gender or genetic
background. As illustrated in Figure 6.1, when we train a classi�er, it learns
a model for each interaction that re�ects the variations in the training ex-
amples. But what if the classi�er later encounters examples of a known
interaction that do not �t the learned model? Is it still accurate, do we
need to train a new classi�er or can we adapt it to the new situation?
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Figure 6.1: Example of a cross-dataset application with an old and a young rat pop-
ulation. Behavior variations may lead to di�erent classi�cation models
for each population.

In this chapter, we examine the capability of two classi�ers to gener-
alize from the training examples to a) the inherent variations of the in-
teractions and to b) examples from another dataset. We �rst discuss the
di�erent sources of variation and how they are typically handled by au-
tomated recognition methods in the literature (Section 6.1). In Section 6.2
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we conduct cross-dataset classi�cation experiments in which we focus on
the di�erence between evaluating within and across datasets. To extent
the classi�er to the other dataset, we aim to remove the di�erence with a
simple domain adaptation technique. In Section 6.3 we report the results
which we then discuss in Section 6.4.

With the experiments in this chapter, we want to show that dataset vari-
ations are not only due to technical di�erences such as camera resolution
but can also be induced by behavior itself. Those variations are potentially
more di�cult to incorporate into a classi�cation method. Prior to the analy-
sis, they may be hidden and thus prevent us from predicting their e�ects
on the classi�cation. This stands in contrast to external factors including
camera resolution and cage size, which are known beforehand. Besides ar-
guing for cross-dataset validation, we also suggest a potential approach to
deal with variations, namely to adapt to the variations using techniques
from domain adaptation [95].

6.1 Classi�cation with Behavioral Variations

Generally, there are two sources of variation in the performance of an in-
teraction. First, if two animals perform the same interaction multiple times
in the course of a video, they will do so slightly di�erently every time. They
may move at a di�erent speed or start the interaction from a di�erent lo-
cation. We consider this the natural variation of an interaction.

Second, there is a systematic bias in the natural variation that depends
on the tested animal population and the environment in which the animals
are observed. The properties of the population and the environment can in-
�uence the way the interactions are performed. For example, genetic back-
ground, age and progress of a disease or its treatment are factors that can
cause animals to move slower than animals from another population. Sim-
ilarly, the environment, which is often created by the researcher to study
and stimulate speci�c behaviors, is characterized by the available space
and the presence of hiding places or novel objects. All of these may allow
or prevent interactions to be performed in speci�c ways or be performed at
all. Finally, the de�nition of the behavior categories could perhaps be con-
sidered a systematic bias as well. A di�erent de�nition or its interpretation
by the annotator can cause parts of interactions or entire occurrences to
be labeled in one experiment and disregarded in another. In contrast to the
other types, the category de�nition does not actually a�ect the animals’
behavior but only its labeling. Hence we do not consider it as a systematic
bias.
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From an automated recognition method we expect that it can handle
natural variations and that the classi�er can generalize from the empiri-
cal training examples to those inherent variations. These are, in essence,
the variations against which a classi�er is evaluated. In the literature, the
majority of automated recognition methods are trained and evaluated us-
ing data from one dataset, hence from one speci�c animal population ob-
served in one speci�c environment [18, 42, 48, 55, 61, 73]. Consequently,
training and evaluation data follow the same distribution with respect to
the systematic bias of the behavior variations. The classi�er learns only
from variations that are due to natural, stochastic diversity.

In itself, having learned the natural variations is not a problem. In con-
trast, it is exactly what we want the classi�er to do. If it succeeds, it will
achieve a high accuracy and we would consider it a good classi�er. The
systematic bias only poses a problem if it di�ers compared to the training
data, for instance, due to modi�cations to the animal population or the
environment [122]. Let us illustrate the problem with an example.

In a longitudinal study conducted to investigate the social behavior of
rats at di�erent points in their life, the advanced age can cause the rats to
move slower during approaching or following. This systematically biases
the variations of these interactions toward lower velocities. If the classi�er
has been trained with data from younger, quicker rats, it may not recognize
the slower interactions and misclassify them. Unlike in this example, a
change in the population or the environment is not necessarily known. A
change in systematic bias can be hidden from us, even when replicating
a previous experiment. Precise replication is actually rather di�cult [26,
146] and involves a range of environmental factors whose e�ects on the
behavior are not well understood yet [133].

In the literature, the e�ect of systematic biases in rodent behavior da-
tasets has received little attention. As stated above, the majority of the
presented methods are developed, trained and eventually evaluated on a
single dataset. This becomes critical when the trained classi�er is applied
in practice. Beyond the speci�c experiment setting that is included in the
dataset, the evaluation is of limited value as it cannot predict the classi�er’s
performance in another setting. Few works explicitly address di�erent set-
tings and include them in their datasets. van Dam et al. [145] use videos
from di�erent rat strains recorded in di�erent cages and Jhuang et al. [59]
vary the lighting conditions and mouse strains. Both use cross-validation
to estimate the accuracy in an unseen setting by leaving one setting out of
the training set and then evaluating on that held out data. The two works
focus exclusively on individual rodent behavior. The social mouse behavior
dataset CRIM13 includes mice of both genders and various treatments, but
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the recognition method is not cross-validated with respect to the di�erent
populations [18].

It seems that including a range of variations in the dataset is the fa-
vorite approach to handle systematic bias. Creating such a dataset obvi-
ously comes at the cost of obtaining additional videos as well as manual
annotation e�ort as the new data need to be labeled. In practice, this means
there is a tradeo� between the e�ort required to create the dataset and
the coverage of systematic variations. Besides this tradeo�, there is an in-
creased interest in designing heterogeneous animal experiments that ex-
plicitly include environmental variations to enhance the robustness of be-
havior analysis [110, 111, 151]. As a result, we may see an even higher de-
gree of diversity within and across experiments in the future. We therefore
argue for an evaluation of automated recognition methods across settings
and datasets. Only with cross-dataset evaluation can we be con�dent about
the performance of the classi�er in practice and judge to which settings we
can apply it without retraining.

6.2 Cross-Dataset Experiments

We now move on to our cross-dataset experiments. Our goal is to quantify
the e�ect of a systematic bias on the classi�cation accuracy in a realistic
scenario. We need two datasets that are su�ciently similar to allow for
cross-classi�cation but yet di�er in one or more aspects that induce a sys-
tematic bias. The RatSI and YR datasets satisfy both premises. They contain
the same set of interactions annotated based on the same de�nitions, are
recorded in a similar environment with the same type of cage and light-
ing conditions, but di�er in the age of the rats. The juvenile rats in YR
are about �ve weeks old and engage frequently in fast-paced, playful in-
teractions. The rats in RatSI are nine month old, larger, slower and their
interactions are typically more gentle and mild.

We perform three experiments. First, we assess the baseline perfor-
mance for each dataset separately by training and evaluating a classi�er
with data from the same dataset (Within-dataset). Second, we assess
whether the classi�er generalizes to other settings by evaluating its per-
formance on the other dataset (Cross-dataset). Third, we aim to neutralize
the age di�erence between the two datasets by scaling the distribution of
the feature values (Adaptation).

In the following paragraphs, we explain the computation of the features
and introduce two classi�cation models that will be used in the experi-
ments.
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6.2.1 Unifying Features Across Animals

In the previous chapter we derived a set of twelve features for the YR da-
taset, which we denoted as Full. We will use this feature set with a few
modi�cations.

Previously, we assumed we would know which animal plays the active
role in the interaction, for example that rat A is following and rat B is being
followed. It was hence straightforward to base the classi�cation on the fea-
tures of the active animal. Now we turn to the realistic scenario in which
we do not have this knowledge. The classi�er is then required to predict
the correct interaction label irrespective of which of the two animals is the
active one.

If both animals are potentially active, we need to consider the features
of both animals for classi�cation. The two-animal classi�cation can be for-
mulated in two ways. We can consider either animal as the active one and
apply the classi�er twice [48], thereby predicting two interaction labels
for every video frame; or combine the two sets of features to one com-
mon feature vector and then classify a frame based on that vector. In the
�rst approach, con�icts in the two predictions need to be resolved in post-
processing, for example by prioritizing the interaction categories before-
hand or based on the classi�er’s con�dence in each label. Furthermore, it
requires that during training of the classi�er the active animal is known
so as to omit the examples from the passive one. We choose the second
approach and unify the features across animals because we consider an in-
teraction being performed by two animals together and should therefore
be inferred from their joint features. The drawback is that the classi�er out-
puts only one label for both animals. If required, the role assignment needs
to be computed in an extra post-processing step, for example, by assessing
the relative positioning of the rats.

Given that the order of the animals is arbitrary, we cannot simply con-
catenate the two feature vectors. Instead, we need to aggregate them across
animals to create a vector that is invariant to the order. For some features,
such as the center-point distance, aggregation is not necessary because the
values for both animals are the same. We call these symmetric features, as
opposed to asymmetric features which take on di�erent values for each an-
imal, such as velocity. In order to aggregate the asymmetric features, we
compute the mean and the absolute di�erence of the values of the two ani-
mals. In total, this yields 17 features computed for every video frame listed
in Table 6.1.

To prevent that di�erent tracking quality in�uences the cross-dataset
performance, we use the YR-ID version of YR with corrected identities in
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Table 6.1: Features used in classi�cation experiments. Asymmetric features are ag-
gregated over animals (superscript 1 and 2) by computing mean and ab-
solute di�erence.
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the tracking data. The tracking quality of this version is comparable to the
quality in RatSI. Furthermore, as we have found in Chapter 5, we cannot
reliably distinguish the contact-related interactions using trajectory-based
features. Therefore, we merge the annotations of the four contact interac-
tions allogrooming, nape attacking, pinning and social nose contact into one
overall contact class.

6.2.2 Measuring Cross-dataset Performance

We conduct each of the three classi�cation experiments (within-dataset,
cross-dataset and adaptation) in two directions: training on RatSI with eval-
uation on YR, and training on YR with evaluation on RatSI. We further
compare two classi�cation methods and thus perform in total twelve ex-
periments.

We use a Support Vector Machine with linear kernel (SVM-Lin) as we
have done previously in Chapter 5 where it yielded the best classi�cation
performance on the YR dataset. For a deeper analysis and comparison of
the models trained on di�erent datasets, we additionally use a Gaussian
Mixture Model (GMM). The GMM is a generative classi�cation model that
allows us to inspect and compare the mean values and covariances of the
trained models.

Both classi�ers have free parameters for which we need to determine
the optimal values. We select the optimal model parameters by cross-
validation. The free parameter of SVM-Lin is the cost function coe�cient
C , which regularizes the resulting model by indirectly controlling the
number of support vectors. The GMM classi�er consists of one mixture
model per interaction. Every model is a mixture of multiple, multivariate
Gaussian components. During training, the optimal mixture is deter-
mined by the Expectation Maximization algorithm [35] which iteratively
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searches for the mixture that best explains the distribution of training
examples of a given interaction. The parameters that need to be set
beforehand are the number of Gaussian components per model, whether
or not to restrict the shape of each component to be ellipsoidal (diagonal
covariance matrices), and a regularization parameter that is added to the
covariance matrices to arti�cially increase their variance. The latter can
be bene�cial for preventing over�tting in small training sets.

The performance is measured as in previous chapters by the F1 score of
each interaction class. To obtain a single measure of performance for the
classi�er, we average the F1 scores over all classes leading to a �nal score
between 0 and 1.

6.2.2.1 Within-dataset Evaluation

We do the within-dataset evaluation using a cross-validation scheme. That
is, we split the dataset into k parts and then train the classi�er on k − 1
parts and measure its performance on the remaining part. This is repeated
such that the performance is evaluated on every part once. For RatSI we set
k = 3 (three videos per part) and for YR k = 5 (one video per part). Because
YR is smaller than RatSI, we split it into more parts so as to maximize the
amount of training data at the cost of more repetitions. In each repetition,
the optimal model parameters are automatically determined by another
cross-validation procedure applied to the videos of the training part. For
the model selection we use four training videos of RatSI (two test videos
and three repetitions), and three training videos of YR (one test video and
four repetitions). Once the optimal parameters are found, the classi�er is
trained on all training parts.

6.2.2.2 Cross-dataset Evaluation

For the cross-dataset evaluation, we only need to measure the performance
on the evaluation dataset. Hence we can use all videos of the training da-
taset for determining the optimal classi�er parameters. On RatSI, the pa-
rameters are found among k = 3 parts, on YR among k = 5 parts. The
best performing settings are then used to train the classi�er on the entire
dataset. Note that the classi�ers evaluated in the cross-dataset setting are
trained on more videos than in the within-dataset setting. This may give
them an advantage as they encounter more natural behavior variations.

6.2.2.3 Evaluation after Feature Scaling (Adaptation)

To examine whether the age di�erence can be removed from the feature
values, we employ a simple technique that scales the values of each fea-
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Figure 6.2: Recognition performance (F1 score averaged over classes) with standard
error for cross-validated within-dataset evaluation.

ture such that the �fth-percentile value is -1 and the 95th-percentile value
is 1. Using the percentiles instead of the minimum and maximum values
increases the tolerance against outliers. We intentionally avoid scaling to
unit-variance as the scaling can be in�uenced by the skewed class priors.
After independently scaling the training and validation sets, we repeat the
cross-dataset evaluation.

6.3 Results

The performance of the classi�ers in the twelve experiments is reported in
Figure 6.2. In the within-dataset experiment, SVM-Lin achieves a F1 score
of 0.59 (0.01 sd.) on RatSI and 0.79 (0.06 sd.) on YR. GMM scores slightly
lower but yet within the same order: 0.55 (0.01 sd.) on RatSI and 0.73 (0.04
sd.) on YR. We �rst notice that the performance on RatSI is substantially
lower than on YR despite having more training examples which empha-
sizes the di�culty of annotating the RatSI videos. The overall performance
on YR is higher than in Chapter 5 (SVM-Lin: 0.61, GMM: 0.61) as we have
merged the contact interactions and thereby simpli�ed the task.

When training on YR and evaluating on RatSI, the performance of both
classi�ers drops considerably by 31.7% to 0.41 for SVM-Lin and by 47.1%
to 0.29 for GMM. In contrast, the performance is mostly maintained in
reversed training direction (RatSI→ YR). After adapting the features, the
classi�ers regain their performance with 0.57 and 0.54, respectively.

Let us delve deeper into the results to �nd the reasons for the perfor-
mance decline in the cross-dataset setting. In the per-class results in Ta-
ble 6.2, we see that most of the decline is caused by a failure to recognize
contact and, in case of GMM, approaching. If we look at the models that
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Table 6.2: Per interaction recognition performance for within-dataset (w), cross-
dataset (c) and adaptation (a) experiments.

SVM-Lin GMM
RatSI YR RatSI YR

w c a w c a w c a w c a
Approaching 0.52 0.39 0.45 0.71 0.65 0.64 0.44 0.00 0.40 0.69 0.54 0.62
Contact 0.71 0.00 0.66 0.97 0.97 0.96 0.67 0.00 0.65 0.94 0.96 0.96
Following 0.58 0.53 0.56 0.77 0.75 0.72 0.51 0.52 0.54 0.68 0.67 0.58
Moving away 0.27 0.28 0.29 0.61 0.51 0.57 0.29 0.09 0.24 0.48 0.55 0.58
Solitary 0.89 0.83 0.88 0.88 0.93 0.94 0.85 0.84 0.85 0.85 0.85 0.91

the GMM learned for these two interactions, we �nd distinct di�erences
that presumably are responsible for many misclassi�cations. In Figure 6.3
we plot the marginal probability density functions of the contact and ap-
proaching models being trained on either RatSI or YR. We concentrate on
three features that exhibit considerable di�erences between the datasets:
the center point distance, the change of that distance over time, and the
mean velocity.

The classi�er has modeled the contact interaction with a smaller dis-
tance given samples from YR than from RatSI. Furthermore, the peak of
the density in RatSI coincides with the peak in YR for approaching. Such a
modeling con�ict is likely to result in numerous misclassi�cations of con-
tact frames. Besides the smaller distance values, the rats in YR also appear
to run faster. The mean velocity of approaching extends further to higher
velocities in the YR model compared to the RatSI model.

As for the reason why the performance is maintained if the classi�er
is trained on RatSI, it appears that the RatSI models have generally larger
variances. The larger variance acts as regularization in favor for this cross-
dataset classi�cation. For example, the mean velocity of the contact inter-
action is modeled by a narrower distribution in YR causing samples just
outside the captured values to be potentially misclassi�ed. A larger vari-
ance can lead to a more gentle decision function. What causes the RatSI
models to have larger variances? The main reason is that RatSI has more
content than YR: 135 min compared to 12.6 min. RatSI comprises more ex-
amples of every interaction and therefore covers a larger variety of feature
values.
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Figure 6.3: Marginal probability density functions of the Gaussian models learned
from RatSI and YR.

6.4 Discussion

Despite that RatSI clearly poses the more challenging classi�cation prob-
lem, we show that it is a suitable dataset for training interaction classi�ers.
While the classi�ers trained on RatSI generalize well to YR, training on YR
is not optimal as is evident from the declined performance on RatSI. This
result demonstrates the necessity to validate classi�ers on other datasets
as their capabilities to generalize cannot easily predicted from a single-
dataset evaluation.

It is a promising result that we were able to compensate for the age
di�erence between the animals and restore the reduced accuracy with a
simple scaling operation. It shows that classi�ers are not necessarily bound
to one experiment setting and highlights the potential for cross-dataset
applications. Clearly, scaling features to a common range is not likely to
perform well under more complicated behavior variations. More advanced
adaptation methods need to disentangle the di�erent in�uences of induced
and natural variations as well as the video acquisition.

Because dealing with behavior variations by adaptation presents a novel
approach for rodent behavior recognition, there are several open questions.
For example, it is yet unclear whether novel examples need to be labeled for
the adaptation and its validation. If so, when does adaptation become less
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e�cient than training a new classi�er? On the positive side, developing
adaptation methods may not only enable automated behavior recognition
in longitudinal studies of diseases, it will also enhance our understanding
of rodent interactions along the way. This will bring us a step closer to a
uni�ed recognition framework that is applicable to a broad range of exper-
iments, animals and environments.

On a conceptual level, adaptation as performed in this chapter is re-
stricted to scenarios in which the same set of behaviors is of interest, their
de�nitions are identical and the video acquisition is similar. If we instead
want to measure novel behaviors or acquire videos, for example, from the
side view as opposed to the top view perspective, then previous classi�ers
may be of limited use. In this case, manual annotation is the only option.
The topic of the next chapter is the reduction of that manual e�ort using
the combined strengths of human and machine.
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In the previous chapter, we demonstrated that behavior variations caused
by di�erent experiment settings can decrease the accuracy of social interac-
tion classi�ers. Although the accuracy can perhaps be restored by adapting
the classi�er to the variations, there are scenarios in which no classi�er is
available or adaptation is not a possibility. For instance, a researcher may
wish to analyze previous data in new light and modify behavior de�nitions
or add new behaviors to the repertoire. Similarly, the behavior variations
across experiments could be so complex that adaptation is no longer a vi-
able, e�cient option. The researcher is left with manual annotation.

Our goal in this chapter is to reduce the manual e�ort in these scenar-
ios. While the researcher annotates the videos, a new classi�er is trained
from the examples she or he already labeled. As soon as enough examples
have been labeled, the classi�er can annotate the remaining, yet unlabeled
videos automatically. This saves time because manual annotation can be
stopped as soon as the classi�er is su�ciently accurate.

Initially, it is unknown how many labeled examples are needed to
achieve a satisfying performance. Consequently, we need to retrain the
classi�er repeatedly while more labeled examples are added. Alternating
between labeling examples and training the classi�er is an iterative
learning process that can be implemented with a human in the loop. This
active learning paradigm has the potential to signi�cantly reduce the
labeling e�ort [125].

It may be possible to reduce the e�ort even further by directing the hu-
man annotator to label those examples that carry the most information
for training the classi�er [84]. Examples that are similar to already labeled
examples are less informative, thus less important than more distinctive
or rare examples [58]. By considering only the most informative examples,
we could train a classi�er that is as accurate as a classi�er trained on all
examples, but with reduced labeling e�ort.

Such an interactive framework has three main components: selecting
examples, labeling them, and training the classi�er. These are the stan-
dard components in active learning applications [7, 152]. In this chapter
we implement and apply them for the �rst time to annotate rodent social
behavior. We experimentally analyze the performance and convergence
properties of di�erent selection algorithms and labeling strategies. To �nd

89
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the parameters that allow us to optimally learn from rodent behavior, we
�rst perform a series of o�ine experiments. In these o�ine experiments
we replace the human annotator by a dataset oracle that labels examples
from previously obtained annotations. Using the oracle instead of a human
allows us to test a large number of parameter settings in a short amount
of time. After we have determined suitable parameters, we validate the
choice in a user study with human annotators. The study demonstrates
the e�cacy of our tool. As in Chapter 6 we cross-validate the results using
the YR dataset to assure that the framework not only produces annotations
for one dataset but also trains more general rodent behavior classi�ers.

The chapter is structured as follows. We �rst introduce the annotation
framework and its components in Section 7.1. We then apply the frame-
work to rodent social behavior from the RatSI and CRIM13 datasets and
experiment with di�erent parameters in Section 7.2. In Section 7.3 we eval-
uate the framework in a user study. Possible extensions in learning and
labeling geared toward larger datasets are tested in Section 7.4. We discuss
the results in Section 7.5.

7.1 Interactive Behavior Annotation Framework

We now introduce our interactive annotation framework for videos. Re-
call that we denote the domain of the feature vectors by X and the set of
the K behavior categories by Y. The feature vector of a frame i is then
xi ∈ X and the corresponding label yi ∈ Y. We consider every frame a po-
tential sample, although for labeling we include surrounding frames from
the video to enrich the sample with context information. The dataset to be
annotated has in total n video frames. RatSI for instance comprises about
202 500 frames and CRIM13 more than 2.5 million.

The framework consists of three main components as depicted in Fig-
ure 7.1. There is a pool of n −m unlabeled samples, U = {xm+1, . . . ,xn}.
Initially, the entire dataset is unlabeled and m = 0. We do not impose any
speci�c order on the samples in the pool but we keep references to the
original video frames to be able to retrieve surrounding frames as context.
FromU a sample xi ,m < i ≤ n, is selected using sampling strategy s . The
sample is then presented to an oracle, usually a human expert, although
for the o�ine experiments we use a data oracle instead. Depending on the
labeling strategy q, the oracle provides label response yi . The now labeled
sample (xi ,yi ) is moved fromU to the pool of labeled samples L. From L
the classi�cation model f (x) is learned. These steps are performed repeat-
edly either for a certain number of iterations or until the labeling is stopped



7.1 interactive behavior annotation framework 91

manually. We will now brie�y describe the three main components of the
framework.

LearningLabeling
Sample
Selection

Figure 7.1: Framework components. See text for details.

7.1.1 Sample Selection

The sampling strategy s(U) determines which sample from the unlabeled
pool is selected. If the strategy does not consider any labeling information,
it is prone to select samples that are similar to previous samples. Such
samples might contain redundant information and are therefore less infor-
mative for the learning algorithm. Furthermore, behaviors that occur with
a low frequency are less likely to be selected. Consequently, the trained
classi�er might be biased towards predicting the more frequent behaviors.

To make better informed decisions, the sampling strategy can be guided
by the current classi�cation model. The strategy then becomes a func-
tion of the unlabeled samples given the classi�er: sf (U). The sampler can
choose to exploit the classi�er’s predictions of the unlabeled samples as
well as its con�dence in these predictions [82, 83]. It can thus avoid select-
ing redundant examples and aim to balance the selection among all behav-
ior categories. We experiment with both random and informed sampling
in Section 7.2.4.

7.1.2 Labeling

Once a sample has been selected, we query its label. To minimize the over-
all annotation time, it is desirable to make the labeling e�cient for the
user. The response time, that is the time the user needs to label a sample,
depends on how evident the behavior in the sample is, the number of label-
ing options to choose from as well as the interaction with the user interface.
Also the amount of context that is shown, that is the frames preceding and
succeeding the selected sample, may a�ect the response time.

Although the labeling strategy does not in�uence the content of the sam-
ple, it does determine the number of labeling options. For instance, it can
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ask the oracle to select the true label for the presented sample out of all
K possible labels. It can also suggest one category and ask whether or not
the sample belongs to that category. With this binary query the number
of options decreases from K categories to two (yes or no), which could
potentially reduce the response time.

Furthermore, the response time could be reduced by making it easier
to �nd the desired labeling option. This could be particularly useful if the
number of options is large. A possible strategy is to sort the labels accord-
ing to the classi�ers certainty. Under the assumption that this moves the
most likely answers to the top of the list, the user should be able to �nd
the desired answer within the �rst few options. We evaluate the 1-of-K
and binary labeling strategies using a data oracle in Section 7.2, and the
�xed-order and ranked user interface strategies with human annotators in
Section 7.4.2.

7.1.3 Learning

The task of the learning algorithm is to train the classi�cation model with
the samples that have been labeled so far. Although we treat both learning
algorithm and classi�er as black-boxes in this chapter, we brie�y discuss
some general implications of their properties. Given the iterative nature
of the framework, the classi�cation model needs to be retrained in regu-
lar intervals. To avoid long waiting times, it is desirable to use an e�cient
learning algorithm that scales favorably with the number of training sam-
ples. Besides being e�cient, the classi�er should be capable of providing
an estimate of the con�dence in its predictions to be able to inform the
sample selection.

Depending on the complexity of the classi�cation problem, we may
avoid retraining the model with all samples in every iteration and
instead use an incremental, online learning algorithm. An online learning
algorithm is able to update a previous model using new training examples.
Without making assumptions about the classi�cation task or the data
distribution, it is often impossible to guarantee that such an algorithm
converges to the optimal solution. In Section 7.4 we examine whether
the speed-up o�ered by Stochastic Gradient Descent [155], a popular
algorithm for large-scale learning, involves a trade-o� in accuracy.

Speci�cally for the evaluation of di�erent labeling strategies, we pose
an additional requirement on the learning algorithm. When labeling bi-
nary queries, a negative response only contains information about one
class (the negatively labeled one) while for the other classes the sample
remains unlabeled. The learning algorithm must be able to utilize the lim-
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ited amount of information in such partially labeled samples. One way of
achieving this is to split the multi-class classi�cation problem into multi-
ple one-versus-all problems. This allows for including a partially labeled
sample in the corresponding sub-problem.

7.2 Active Learning for Rat Social Behavior

We now apply the proposed annotation framework to rat social behavior
using the RatSI dataset. Our goal is to determine the optimal settings of our
framework, in particular the following parameters: sample selection with
respect to class balance and uncertainty level, and the presentation of the
labeling options. We implement a range of sampling and labeling strate-
gies and analyze their e�ect on the performance. We perform the analyses
in o�ine experiments using a data oracle instead of a human annotator.
The oracle responds with labels from the already annotated experiment
dataset. This experimental setting enables us to conduct a large number
of experiments in a short amount of time. Clearly, there is no guarantee
that the determined settings are also e�ective in practice when a human
annotator performs the labeling. Therefore, we will validate our choices in
a user study in Section 7.3.

7.2.1 Evaluating the Learning Performance

We conduct a series of learning experiments in which we evaluate three
sampling and two labeling strategies, and di�erent parameter settings. To
analyze the in�uence of each setting on the learning performance, we �x
as many components of the experiment setup as possible.

First, we establish a validation set that is used to measure the classi�ca-
tion performance. The validation set is separate from the experiment data
set to ensure that the classi�er has indeed generalized beyond the training
examples. The validation set consists of two videos from the RatSI dataset
that were chosen such that all behaviors occur su�ciently often to obtain
a reliable performance measure. In practice, a validation set is typically
not available. We only use it here to evaluate our framework. The experi-
ment set contains the remaining seven RatSI videos and forms the initially
unlabeled poolU.

We compute the same feature set as in Section 6.2.1. The feature vector
has 17 elements. As before we normalize each feature dimension such that
the 5th percentile has the value -1 and the 95th percentile the value 1. Only
the data from the experiment set are used for determining the normaliza-
tion parameters.
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We initialize the framework with one labeled sample per behavior and
train the initial classi�er. Although not strictly necessary, the initializa-
tion prevents several iterations of random sampling before a reasonably
e�ective classi�er can be trained. This e�ect is more pronounced when
class distributions are unbalanced. In our experimental setup, this choice
ensures that all experiments have the same starting point. The initializa-
tion samples are the mid-frames of randomly chosen interactions to avoid
initialization with an ambiguous transition. We believe that �nding one
example per class by scrolling through the videos is a feasible task for the
human annotator in practice.

We �x the number of queries per learning experiment to 400 as these
yielded su�cient examples for convergence in previous experiments. To
limit the duration per experiment, we issue the queries in batches. After a
batch has been labeled, the model is retrained and its performance is mea-
sured. We experiment with di�erent batch sizes in Section 7.2.3.1. Because
the learning framework may include stochastic sampling decisions, we re-
peat every experiment ten times using the same settings. We report the
means and standard deviations for all metrics.

As in previous chapters, we present the classi�cation performance as the
F1 score averaged over classes. We are also interested in how the perfor-
mance evolves as more training examples become available. This gives us
the option to detect when classi�ers converge. We report the performance
over time in learning curves that plot the averaged F1 score against the
number of queried samples. To give an objective measure for comparing
learning curves, we compute the area under the learning curve (AUC). The
AUC combines the performance at the end of a learning experiment with
the number of examples the classi�er needed to reach that performance.
Intuitively, we can interpret the AUC as a measure for the e�ciency of the
framework in terms of training examples. We report the area divided by
the number of iterations to obtain a score in the range [0, 1]. A score of 1
indicates perfect learning performance where after only one iteration the
classi�er is able to label all test examples correctly.

7.2.2 Querying the Oracle

Because we are working with videos, a sample corresponds to a video
frame. However, from a single frame the human annotator will not be able
to reliably determine the performed action. Hence, we display a video clip
surrounding the selected frame, which raises the question of a suitable clip
duration. Short clips may not contain enough information while longer
clips have a higher chance of containing more than one interaction which
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cannot be annotated with a single label. In pilot experiments, we found
that a duration of one second is a suitable trade-o�. The optimal duration
may vary for other types of behavior. A video clip is constructed such that
the selected frame occurs halfway through the clip. The response of the
user is then assigned to all frames of the clip.

In the o�ine experiments, the data oracle determines its response by the
majority vote over all labels in the queried clip. To prevent that a clip which
contains multiple interactions is labeled by only one label, we require that
the majority vote covers at least 30% of the clip. Otherwise the data oracle
rejects the clip and returns the label “Uncertain”. A rejected clip accounts
for one labeling iteration but the framework does not learn from rejected
samples. A rejected clip cannot be queried again.

7.2.3 Linear Classi�cation Model

To classify the rodent interactions we use a log-linear classi�cation model.
We achieve multi-class classi�cation by training multiple binary classi�ers
in a one-versus-all scheme similar to related work [42, 61, 112]. Each clas-
si�er distinguishes one class from all other classes.

Each of the K = |Y| classi�ers is determined by coe�cients wk and bk
with k = 1…K :

fk (x) = w
>
k x +bk . (7.1)

The result of fk (xi ) is positive if the sample xi belongs to the positive class
according to the classi�er, and negative if it belongs to any other class. To
assign the class label ŷi ∈ Y, we evaluate all models and decide for the
class with the highest positive output:

ŷi = argmax
k

fk (xi ). (7.2)

7.2.3.1 Training

The K binary classi�ers are trained independently of each other. Here we
describe the general training procedure for one classi�er f (x) with binary
labels y ∈ {−1, 1}. We determine the optimal model parameters w and b

by minimizing the regularized training error

min
w ,b

C
m∑
i=1

L(yi f (xi )) +
1
2
w>w (7.3)

over the m examples in the training set L = {(x1,y1), . . . , (xm ,ym)}. The
loss function L : z 7→ [0,∞) ∈ R and the regularization termw>w compete
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for the con�icting goals of low classi�cation error and low model complex-
ity, respectively. This trade-o� is controlled by the free parameter C . The
loss function implies a cost for predicting f (xi ) when the true label is yi .
We solve Equation 7.3 using the LIBLINEAR library which uses Coordinate
Descent for �nding the minimum [43].

For our classi�cation task, training the model is an e�cient operation
that takes less than one second with a standard 2.4 GHz CPU. That allows
us to simply learn a new model in every training iteration instead of up-
dating the previous model. As learning more complex classi�cation models
may take substantially longer, it may be preferred to update the model in
those scenarios. Performing an e�ective and e�cient update is a challeng-
ing task that is the research topic of online learning [14, 21, 77].

In the case of skewed class distributions, the majority classes dominate
the training error which can lead to inaccurate classi�cations of minority
classes. To counter the imbalance, we use a class weight in the learning
algorithm as introduced previously [154]. This weight assigns a relative
higher importance to samples of smaller classes and is multiplied with the
sample’s loss. The weight is computed by ck =m/(K · l(k)), where l(k) is
the number of samples of class k in the labeled training set L.

In order to enable the sample selection to utilize con�dence information
from the classi�er, we require con�dence scores for unlabeled samples. We
can compute such scores from the classi�er output if we use the logistic
loss function

L (yi f (xi )) = log (1 + exp (−yi f (xi ))) (7.4)

in the minimization problem in Equation 7.3. With this loss function we
e�ectively train a logistic regression model that allows us to interpret the
model outputs probabilistically. First, we estimate the posterior probability
that the binary classi�er correctly classi�es sample xi as positive (yi = 1)
using the sigmoid function:

p(yi = 1|xi ) = σ (f (xi )) =
1

1 + exp (−f (xi ))
. (7.5)

Then, the posterior probabilities from all K classi�ers are normalized to
a con�dence score p̃(y |x) whose sum over all classes is one. We will later
use this con�dence score to �nd potentially informative examples that are
queried for labeling.

7.2.3.2 Parameter Search

Before we move on to investigate di�erent sampling and learning strate-
gies, we �rst determine a suitable value for the regularization parameter
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Figure 7.2: Performance with respect to framework parameters.

C and the query batch size. We search for C in the range from 10−6 to 103.
Figure 7.2a shows the area under the learning curves and the average F1
score after the last learning iteration. C = 0.1 achieves the highest perfor-
mance with AUC = 0.51 (0.01) and F1 = 0.54 (0.01). Generally, high values
ofC and thus low regularization lead to better performance. We �xC = 0.1
for all remaining experiments.

Di�erent query batch sizes have only a marginal e�ect on learning per-
formance as observed in Figure 7.2b. The learning rate tends to be slightly
lower in the beginning for larger batch sizes, but all classi�ers eventually
converge to the same classi�cation performance. With a lower batch size,
the classi�cation model is updated more frequently which potentially leads
to better sampling and learning decisions at the cost of higher computa-
tional demand. We choose a batch size of 10 as a trade-o� between learning
rate and the number of retraining operations.

For reference, we show the performance of a classi�er trained with the
entire labeled experiment dataset (supervised, F1 score = 0.57) and the
baseline classi�er that makes random classi�cation decisions (baseline, F1
score = 0.2). The supervised F1 score is slightly lower than in the previ-
ous chapter (0.59) as we use two �xed validation videos instead of cross-
validation, which in�uences the exact evaluation score.

7.2.4 Sample Selection

We now address the sampling from the unlabeled poolU. We �rst assume
that we have no knowledge about the properties of U, such as the label
distribution. A possible approach is then to simply select the �rst sample in
U, then the second, and so forth. However, we do know thatU is created
from videos and that the labels of consecutive samples are thus correlated.
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To spread the selection across behaviors, events and videos, we can there-
fore better select random samples.

7.2.4.1 Exploiting Class Priors

The random strategy is unaware of the labels that the selected samples may
have and also does not attempt to predict what it may be. Given the label
imbalance in the dataset, it is thus prone to �lling the labeled pool L with
samples from the majority classes and neglecting smaller classes. While
an unbalanced training set can lead to biased classi�cations, the under-
representation of minority classes can also hinder learning accurate mod-
els of these classes especially in the �rst iterations. Intuitively, a better
sampling strategy would aim to balance its selection among all classes. Us-
ing the current classi�cation model, such a strategy predicts the labels of
the unlabeled samples and makes its selection accordingly. We implement
this balanced strategy such that it selects two samples of each class for
every batch of ten queries.

To con�rm our intuition, we compare the learning performance of the
random and the balanced strategies in Figure 7.3. After 400 iterations the
classi�ers have converged to an accuracy that is close to the supervised
classi�er but using only 6.4% of the samples in the experiment set. This
demonstrates the redundancy of many samples in the dataset. Compar-
ing the performance of the two sampling strategies, we �nd that balanced
leads to better classi�cation accuracy after the 100th iteration. This con-
�rms our intuition that the random strategy does not sample su�ciently
from the smaller classes. If we were to proceed with the labeling, the two
strategies would eventually converge to the same performance as also the
random strategy will encounter rare examples. Once the training set in-
cludes su�cient examples from all classes, the learner would not bene�t
from the more balanced set.

7.2.4.2 Exploiting Classi�er Con�dence

The balanced strategy randomly selects the samples within the targeted
class. It is therefore still prone to select samples that are similar to previ-
ously labeled ones. If we want to select more informative samples, we �rst
need to de�ne what constitutes the expected information of a sample. As
criterion for informativeness we utilize the classi�ers’ con�dence in the
prediction of a label. The intuition is that the sample that the classi�er is
least certain about is the most informative to learn from. Hence, a straight-
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Figure 7.3: Performance of random and balanced sample selection strategies.

forward approach is to select the sample x∗ with the lowest con�dence in
the highest scoring label ŷ [82]:

x∗ = argmin
x

p̃(ŷ |x). (7.6)

Recall that the con�dence p̃(ŷ |x) is a real-valued number in the range [0, 1]
with 0 being least con�dent and 1 being maximally con�dent. The sum of
the con�dence values for all possible labels of one sample is 1.

Selecting the least con�dent sample appears to be a good choice for clas-
si�cation tasks with clear and unambiguous data [124]. Rodent behavior
however is often ambiguous [136]. In particular the transitions between
interactions are inherently di�cult to label consistently. Querying accord-
ing to the lowest con�dence is likely to result in many clips showing in-
teraction transitions and ambiguous behavior. We therefore generalize the
selection criteria in Equation 7.6 to select the sample that is closest to an
arbitrary con�dence level CL ∈ [0, 1]R:

x∗ = argmin
x
|CL − p̃(ŷ |x)| . (7.7)

We further extend the con�dence-based strategy by reintroducing some
explorative abilities. Given a classi�cation model and a poolU, the selec-
tion criteria in Equation 7.7 is deterministic. By converting the selection to
a probabilistic sampling, we allow for more randomness. We assign each
sample x ∈ U a weight ν ,

ν (x) =
1

√
2πσ 2

exp
(
−
(CL − p̃(ŷ |x))2

2σ 2

)
, (7.8)

and then draw a sample x∗ ∈ U with probability proportional to the as-
signed weight. For our experiments we set σ = 0.025 creating a narrow,
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rather conservative window that allows for some randomization among
samples but prefers con�dence values close to the desired level.

7.2.4.3 Results

To �nd the optimal con�dence level, we examine how the levels compare in
terms of learning performance. The results in Figure 7.4 show that CL=0.4
leads to the best learning performance. A con�dence level of 0.2, equivalent
to highly uncertain samples, yields lower performance. The performance
also decreases for higher con�dence levels because they lead to typically
less informative samples. Although these are plausible e�ects on the per-
formance, the overall gain of using con�dence-based sampling over the
balanced strategy is limited.

0 100 200 300 400
n queries

0.2

0.3

0.4

0.5

F1
 s

co
re

Balanced
CL=0.2
CL=0.4
CL=0.6

CL=0.8
CL=1.0
Supervised
Baseline

(a) Learning curves

AUC F1
mean std mean std

Balanced 0.53 0.01 0.56 0.01
CL=0.2 0.51 0.03 0.55 0.01
CL=0.4 0.53 0.01 0.56 0.01
CL=0.6 0.50 0.01 0.54 0.01
CL=0.8 0.46 0.02 0.49 0.02
CL=1.0 0.45 0.03 0.49 0.03

(b) Statistics

Figure 7.4: Sample selection with di�erent con�dence levels (CL).

Let us brie�y investigate how the levels in�uence the sample selection.
Our intuition is that a higher con�dence level leads to less informative,
more redundant samples. We measure the redundancy by the ratio of que-
ries for which the desired target class matches the label given by the oracle.
Figure 7.5 shows the measure for the di�erent con�dence levels as well as
the balanced strategy for reference. The results support our intuition: sam-
ples with higher con�dence values belong more often to the predicted class,
while samples with lower con�dence values are less often what the classi-
�er predicts. Notably, below about 0.8 the con�dence level is a reasonably
accurate predictor as to how often the classi�er is correct. For CL = 0.6,
65% of the queries match the prediction, for CL = 0.4 it is 49% and for
CL = 0.2 29%. This con�rms that the con�dence score generated by the
classi�er is a reliable measure for its uncertainty. A high con�dence how-
ever does not guarantee correct prediction.

Naturally, labeling a sample that is already predicted correctly will cre-
ate less information than a sample that is currently misclassi�ed. However,
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Figure 7.5: Agreement between target class and label response for di�erent con�-
dence levels (CL).

selecting low-con�dence samples con�icts with the goal to balance the se-
lection equally among all classes. Therefore, choosing a con�dence level
involves a tradeo� between a balanced but more redundant selection on
one side and a random, more informative but potentially also more am-
biguous selection on the other side.

7.2.5 Labeling Strategy

The labeling of queried video clips should be correct and quick. The label-
ing strategy in�uences both properties. We propose three labeling strate-
gies:

1. 1-of-K , �xed-order labeling: the user selects the true label from a list
of all options with some �xed ordering (e.g., alphabetical).

2. 1-of-K , ranked labeling: the user selects the true label from a list of all
options that is sorted by the classi�er’s con�dence. The con�dence
level is also indicated in some visual representation such as colored
bars.

3. Binary labeling: the user selects whether or not the shown clip be-
longs to one speci�c target class.

Intuitively, we expect the labeling time to gradually decrease from strategy
1 to 3. In the ranked list, the user should �nd the true label among the
�rst two items most of the time if we assume that the model is reasonably
accurate after a few iterations. Otherwise the time should be comparable to
the �xed-order case. Responding with only Yes or No should be even faster
as the user only needs to con�rm or reject instead of deciding between K

classes.
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Figure 7.6: Comparison of 1-of-K (�xed-order) and binary labeling strategies.

The 1-of-K and binary labeling strategies di�er in the amount of infor-
mation that the classi�er gains from one user response. In the 1-of-K strate-
gies, we always receive the true label irrespective of how the classi�er pre-
dicted the sample. In the binary labeling strategy, the information depends
on the response. With a positive response, we receive the true label. With a
negative response we only learn that the proposed target class is incorrect
but not which class would have been correct.

In the following experiment we focus on how the framework deals with
the binary labeling strategy. Because the order of the labeling options is
irrelevant for the data oracle, we disregard the ranked strategy for now
and will return to it in the user evaluation in Section 7.4.2. We use CL = 0.4
for both 1-of-K and binary labeling as it is the optimal parameter for both
strategies (data not shown for binary labeling).

As seen in Figure 7.6 the learning performance with binary labeling is
substantially lower. Both learning rate and performance after 400 itera-
tions show that the binary labeling responses carry less information and
more labeled examples would be needed to reach the same accuracy. Bi-
nary labeling does not appear to be an adequate strategy for these data.

7.2.6 Validation on CRIM13

We validate the e�cacy of the interactive framework on the public CRIM13
mouse social behavior dataset. The social interactions in CRIM13 are sim-
ilar to RatSI and the mice also display approach, chase, and walk away be-
havior. In addition, there is circling behavior in which one mouse moves in
circles around the other. Circling occurs only sporadically and is therefore
a minority class in CRIM13. As for RatSI, we treat all close-contact interac-
tions, which we cannot distinguish reliably with the current tracking and
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Figure 7.7: Learning performance on CRIM13 dataset.

feature extraction algorithms, as one contact behavior. Similarly, we join
actions performed by the individual animal such as drink and eat and cre-
ate a solitary class. The label set then consists of six labels: approach, circle,
contact, following, moving away and solitary.

For CRIM13 we use a smaller feature set with seven features as the loca-
tion tracking provides only a single point instead of multiple body points.
Detailed body point distances are thus not available and the orientation
has to be estimated from motion, which we found to be less reliable (Sec-
tion 4.3.1). We use the distance dcc , relative orientation φ, relative heading
cos (γ ), the derivative of each of the former as well as the velocity vc . The
experiment set, which is the set of videos to be labeled, consists of the
training videos as used by the dataset authors. We use the corresponding
test videos for computing the validation scores below. We omit videos with
anesthetized intruders as these lack the relevant social behavior.

We perform the same learning experiments as before using the data ora-
cle and compare the balanced con�dence-weighed sampling strategy with
the random strategy. The same learning and classi�er parameters are used
(C = 0.1, CL = 0.4). The results are shown in Figure 7.7.

The framework is able to train a classi�er for the CRIM13 dataset with a
di�erent feature set and slightly di�erent behavior categories. Compared
to RatSI we need more training examples and the accuracy after 800 itera-
tions (0.48) has not converged to the supervised reference performance yet
(0.52). Looking at the ratio of examples that have been labeled per class in
Figure 7.7b, we notice that the balanced strategy has indeed selected more
minority examples than the random strategy. Despite this 2 to 7-fold in-
crease in minority samples, we do not observe any substantial di�erence
in learning performance between the two sampling strategies.
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7.3 User Evaluation of the Annotation Framework

We now apply the annotation framework in practice using human anno-
tators. In this user study we focus on the choices we made in Section 7.2
regarding the di�erent framework settings: is a human annotator able to
train an accurate classi�cation model with the same settings?

7.3.1 Experiment Setup

7.3.1.1 Framework Settings

We use the framework settings that achieved the highest performance in
the experiments in Section 7.2. We set the con�dence level for the sample
selection to CL = 0.4. Both learning algorithm and initial samples are the
same as in the o�ine experiments.

7.3.1.2 User Interface

The user interface of the annotation framework as depicted in Figure 7.8
was speci�cally developed for this experiment. It shows the experiment
progress, the video screen and the labeling buttons. During the experiment,
the queries are automatically selected and presented by the framework.
The video clips of one second are displayed in a continuous loop until the
user responds by clicking one of the label buttons. Immediately after a
response the next clip is played. Users have the option to reject a query if
they are unsure about the correct label. As before, rejected queries count
as one iteration but the corresponding samples are ignored for learning.
Rejected samples cannot be queried again.

7.3.1.3 Protocol

All participants received the same written instructions about the labeling
task. Next to a brief written description of the behaviors, participants were
shown a short video with typical examples of each behavior. There was
no time restriction for how long participants would familiarize themselves
with the material (typically less than 5 minutes). From the �ve participants
in total, one had no prior experience in labeling rodent interactions, and
four had labeled rodent behavior before but were neither considered ex-
perts nor received professional training.

Given that the learning curves converge after approximately 300 itera-
tions, we asked participants to label 300 clips per labeling strategy. After
every 50 clips, the labeling process was interrupted so that participants
could have a short break. Participants continued at their own pace.
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Figure 7.8: User interface of annotation framework used in user study.

7.3.1.4 Measurements

In addition to the learning curve and AUC as introduced in Section 7.2.1,
we time the participants’ responses. The response time is the time from the
start of a video clip to the moment the user clicks on a label. We report the
sum of all response times as the total annotation time. Scores are averaged
across participants and mean and standard deviation are reported.

7.3.2 Results

The participants needed on average 18.7 minutes for labeling the 300 clips
excluding breaks and they rejected on average 5.7% of the queries as un-
certain. The average time needed for labeling one minute of video using
the interactive framework was 3.7 min which is comparable to the time
needed in traditional, sequential annotation tasks, usually between 3 and
10 min [3, 18, 145].

In contrast to traditional labeling, the interactive framework not only
obtains annotations from the user, it also trains a behavior classi�er at
the same time. In Figure 7.9a we see that after 300 labeling iterations the
classi�ers are as accurate as classi�ers trained by the data oracle. Also the
learning rates (AUC) are comparable. The results validate the framework
settings that we determined with the data oracle.

Note that our experiment setup causes small di�erences in performance
�gures because the data oracle uses the ground truth annotations from
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Figure 7.9: Learning performance with human annotators on RatSI.

the expert who labeled our dataset in advance. This yields two advantages
for the data oracle. First, the data oracle’s score does not su�er from the
inter-annotator disagreement between its labels and those in the validation
set [49, 80]. Second, the expert was not restricted to labeling one second
clips and could thus exploit contextual information. Therefore, the labeling
of the data oracle can be assumed to be more informative.

Let us take a look at the annotations that are automatically generated by
the trained classi�ers. We compare the annotations to each other directly
by calculating the F1 score between each pair of annotations. Table 7.1
averages the results within and across groups, that is repetitions (data ora-
cle) and study participants (human). Note that these are not accuracies in
terms of the ground truth labels but agreements among the predictions of
di�erent classi�ers. Within each group, oracle or human, the agreement is
high with an average F1 score of 0.80 and 0.79, respectively. Between ora-
cle and humans the agreement is lower with a score of 0.70. We �nd that
the human-trained classi�ers tend to predict more often moving away and
less often following compared to the oracle-trained classi�ers. This di�er-
ence in the prior probabilities seems to be largely responsible for the lower
agreement score.

Table 7.1: Average pairwise agreement (F1 score averaged across behaviors cate-
gories) among the annotations generated by the trained classi�ers.

Data oracle Human
mean std mean std

Data oracle 0.80 0.03 0.70 0.05
Human - - 0.79 0.04
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7.3.3 Cross-dataset Validation on YR

To evaluate whether the classi�ers trained by the users are applicable be-
yond the training videos, we validate them on the YR dataset. This cross-
dataset validation is essentially a replication of our experiments in Chap-
ter 6. In addition to the overall performance of the user-trained classi�ers,
we also compute the learning curves using the intermediate classi�ers af-
ter every labeling iteration. For reference, we include the supervised per-
formance of the classi�er trained and tested on YR using a 5-fold cross-
validation as in Section 6.2.2.
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Figure 7.10: Learning performance with human annotators validated on YR.

The results are shown in Figure 7.10. The human annotators of our study
outperform the data oracle in both learning rate and classi�cation perfor-
mance after 300 iterations. The classi�cation performance (0.76) is only
slightly lower than the supervised, within-dataset reference (0.79). This dif-
ference between within and cross-dataset evaluation (0.03) is in line with
our previous observations in Section 6.3 (0.03 and 0.02 using SVM-Lin and
GMM, respectively).

Remarkably the data oracle performs substantially worse. A look in the
per-class accuracies reveals that the classi�cation performance on themov-
ing away category is worse than for human annotators. As mentioned be-
fore, the human annotators have labeled more moving away samples than
the data oracle. This di�erence in prior probabilities appears to result in
an accuracy di�erence on the YR dataset, where on RatSI it did not a�ect
the average performance. A possible explanation is that moving away in-
teractions in YR typically include clear and sudden changes in velocity. As
the rats in RatSI are slower, the boundary between walking and running
are more vague. The participant labels seem to align better with the char-
acteristics of the young rats’ behavior.
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Overall, the cross-dataset result demonstrates that our annotation frame-
work allows training rodent behavior classi�ers that are not necessarily
limited to one setting. In practice, this can decrease the manual e�ort even
further as the trained classi�er may be used to annotate also new videos
beyond the initially considered experiment. Naturally, the concerns regard-
ing cross-dataset validation that we raised in Chapter 6 also apply to the in-
teractive annotation setting and some form of evaluation is recommended.

7.4 Scaling Toward Learning in Larger Datasets

So far we considered e�ciency only in terms of annotation time and man-
ual e�ort. We thereby disregarded the computational complexity of train-
ing the classi�cation model. We have chosen a linear classi�cation model
that not only compared favorably against other classi�ers with respect to
accuracy but also e�ciency. Together with the relatively low number of
samples, our speci�c classi�cation task has proven to be computationally
inexpensive. We now want to make a �rst step toward scaling this learning
framework to deal with larger, computationally more demanding datasets.
Speci�cally, we replace the Coordinate Descent (CD) learning algorithm
we have used until now with a potentially more e�cient algorithm: Sto-
chastic Gradient Descent.

Stochastic Gradient Descent (SGD) [155] is a popular choice for large-
scale learning tasks such as training convolutional neural networks [14,
132]. SGD is a gradient-based minimization algorithm that aims to �nd the
minimum by following the steepest gradient of the objective function. In
large training sets with high-dimensional features, computing the gradient
is an expensive operation. SGD reduces the computation time by approxi-
mating the gradient using only a random subset of the samples. Although
the gradient computation is quicker, because it is an approximation the al-
gorithm may require more iterations to converge to the minimum than an
exact algorithm. A learning schedule may reduce the number of iterations
by, for example, altering the step size with which the gradient is followed.
Learning schedules introduce additional parameters that need to be tuned
in order to optimize the accuracy of the �nal classi�cation model. We use
it to minimize the training error with the same objective function as before
(Equation 7.3 in Section 7.2.3.1).

In this section, we examine how using SGD a�ects learning rate, clas-
si�cation performance and computation time by performing the same ex-
periments as in Section 7.2. We further conduct another user study includ-
ing an additional labeling strategy which ranks the labeling options and
presents them in the order of their likelihood (Section 7.4.2).
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Figure 7.11: Learning performance using SGD and data oracle on RatSI.

7.4.1 Results: Data Oracle

We �rst look at learning rate and classi�cation performance achieved with
the data oracle. Figure 7.11 summarizes the four learning settings with
which we have experimented before: random sample selection (random),
balanced selection (balanced), and the two labeling strategies (1-of-K and
binary) applied to balanced selection with con�dence level CL = 0.4. The
supervised reference performance is given by the model trained with SGD
using all potential training samples. As with the other learning algorithm,
we �nd that the di�erences among the selection settings are modest. Only
the binary labeling strategy cannot compete due to the lower amount of
information carried by the binary labels. Overall, SGD-trained classi�ers
appear to converge in fewer iterations but yield a lower absolute perfor-
mance (0.52) than the CD-trained classi�ers (0.56).

Turning to the computational complexity, we measure the time the learn-
ing algorithm needs to train the classi�cation model. Figure 7.12 shows
how the training time evolves as the labeled training set becomes larger.
Both algorithms are fast in absolute terms, but SGD scales more favorably
toward larger datasets. Comparing between the two datasets, CRIM13 re-
quires an additional 0.2 seconds irrespective of the number of training sam-
ples. This is due to a caching operation in our framework which takes
longer for the much larger CRIM13 dataset. When we consider both time
and learning performance, we recommend using an approximating learn-
ing algorithm such as SGD only when the training time otherwise signi�-
cantly increases the total annotation time for the user.
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Figure 7.12: Time required for model training by Coordinate Descent (CD) and Sto-
chastic Gradient Descent (SGD) for increasing training set size.
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Figure 7.13: Learning performance using SGD with human annotators on RatSI.
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Figure 7.14: Total annotation time needed by human annotators for 100 clips.
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7.4.2 Results: Human Annotators

In this second user study we move our focus toward di�erent labeling
strategies: if we let the user know about the classi�er’s con�dence in a
query, does it decrease the response time? Or does this information bias his
decisions and thus harm the learning performance? We address these ques-
tions by comparing the 1-of-K labeling strategies (�xed-order and ranked).

We asked ten participants to label 100 clips per labeling strategy. Each
participant performed the annotation task subsequently using both strate-
gies, hence labeling 200 video clips in total. To be able to reveal any learn-
ing e�ects between the �rst and the second trial, we alternated the order
of the strategies between participants. After every 20 clips, the labeling
process was interrupted so that participants could have a short break. Par-
ticipants continued at their own pace.

Comparing the �xed-order and ranked strategies in Figure 7.13, there
seems to be no clear winner in terms of performance. Although the �xed-
order strategy reaches a slightly higher mean AUC, it shows no substan-
tial gain given the variance among participants. Turning to the annotation
time in Figure 7.14a, there is again no clear advantage in using either strat-
egy. The average annotation time is similar, 8.2 min for �xed-order and
8.7 min for ranked, but varies from approximately six to eighteen minutes
across participants. In Figure 7.14b we consider the annotation time of the
participants individually. All participants were faster in the second trial
irrespective of which interface they used �rst. This indicates a learning
e�ect in the participants leading to shorter durations in the second trial.

As a �nal aspect we address the bias of users with respect to speci�c
labeling responses. Recall that the sampling strategy attempts to balance
the selection across classes. The algorithm uses the predictions of the un-
labeled samples to select a sample of the desired target class. Because the
selection is based on a prediction, the sample may belong to a di�erent
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Figure 7.15: Agreement between target class and response by human annotators.
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class than anticipated. In Figure 7.15 we display the ratio of agreement
between the target class and the actual labeling response. We �rst notice
that the data oracle agrees less often with the target class than the human
annotators. This e�ect may suggest that human annotators tend to label a
speci�c interaction even if it is only partly visible in the clip. The majority
vote applied by the data oracle forbids such �exibility. This explanation
is in line with the increase of agreement for users who used the ranked
strategy in their second trial. The ranked strategy openly displays the clas-
si�er’s con�dence in each label. In the second trial, the users were already
familiar with the interface and the behaviors. It is possible that the famil-
iarity with the task caused these users to more often accept the proposed
target class if there was at least some agreement with the shown behavior.
Despite this slight bias, all users eventually trained classi�ers with very
similar performance, indicating how modest the e�ect of the interface on
the annotation performance is.

7.5 Discussion

The presented interactive framework enables researchers to quickly an-
notate rodent behavior videos with a strongly reduced amount of work.
The key to the reduced e�ort is to put the human in the annotation loop.
With this active learning setup, we can avoid sequential and redundant
labeling of similar samples and decide to stop labeling once the classi�ca-
tion is su�ciently accurate. From our o�ine experiments with a dataset
oracle, we conclude that the dominant factor for reducing labeling e�ort
is the non-sequential labeling with a stopping criterion. Although balanc-
ing samples across rodent interaction classes and selecting more uncertain
samples slightly improve the learning rate, the impact on the reduction is
modest. We con�rmed these results with another set of learning experi-
ments on the mouse behavior dataset CRIM13 using a smaller feature set
and slightly di�erent interaction categories.

That the number of labeled samples rather than the information they
carry appears to be more important for learning, indicates that our sam-
pling strategies are not yet fully e�ective. On the one hand, the limited
e�ectiveness could be caused by an inadequate criterion for the expected
information. We based this criterion on the uncertainty of the classi�er.
On the other hand, a qualitative assessment of selected clips of di�erent
levels of uncertainty gives clear and intuitive results. Clips that are pre-
dicted with high certainty show indeed clear and prototypical interactions.
Clips with low certainty often show ambiguous behavior or transitions be-
tween interactions. The disagreement between the qualitative assessment
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and the quantitative e�ect on learning demonstrates the discrepancy be-
tween what seems informative to a human and what is actually informative
for a learning algorithm. Similar e�ects are found for �ne-grained object
recognition where ambiguity in the most uncertain samples prohibits hu-
mans to choose a label [70]. A better criterion for selecting samples could
be the expected increase of classi�cation accuracy [24, 116] or the expected
change of the classi�cation model [47, 127].

Aside from the annotations, the framework also outputs a trained be-
havior classi�er. This classi�er can be used to annotate even more videos
from similar experimental settings without additional manual labeling as
we have validated in the cross-dataset application with the YR dataset. As
such, the speed-up in annotation can even be larger. However, an inter-
actively trained classi�er is unlikely to be more general than a classi�er
trained on a large training set. Therefore the same concerns as in Chap-
ter 6 can be raised regarding an adequate cross-dataset validation.

Considering the �nal classi�cation model, we found the accuracy of the
user generated annotations to be slightly lower than when the data oracle
was used. The di�erence is presumably due to the inter-annotator disagree-
ment between the user who labeled examples and the expert who labeled
the validation videos. The data oracle uses examples that are labeled by the
same annotator as the validation set and thus the accuracy does not su�er
from the disagreement. We found no such advantage in the cross-dataset
evaluation where the validation videos were labeled by another annotator.

Although the users in our study were novice users with little or even
without any experience in rat behavior, they were all able to train an ac-
curate classi�er that is on par with the supervised classi�er. Although
the annotated interactions are rather intuitive and demand little experi-
ence from the annotators, this result encourages the application of the pre-
sented framework in practice. There are several practical questions to be
addressed in the future in order to expand the functionality of the frame-
work. For example, a common issue of the active learning approach is the
quantitative evaluation of the classi�cation performance. As training sam-
ples are selected automatically, they are not independent and can not eas-
ily be used for cross-validation. We may also address sample selection and
learning in face of uncertain or wrong labeling decisions by the human
annotator [124].

We have validated the framework mainly on a dataset with �ve rat social
behaviors. If a dataset contains more behaviors, we will naturally need to
label more video clips to capture examples of all behaviors. If the behaviors
are more di�cult to distinguish, for example because of temporal depen-
dencies, we may need to provide more �exibility to deal with temporal
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variability. A potential extension of the framework is to give the user the
option to continue watching the video after the clip. Behavior transitions
can be addressed by allowing the user to divide a clip and label each part
separately. These extensions to the framework are solely in the user inter-
face and do not require any modi�cations in the learning algorithm.

In conclusion, we have shown that interactive labeling can be used to
annotate rodent behavior with strongly reduced manual e�ort. We are con-
�dent that extensions to the framework will allow for the annotation of an
even larger range of relevant rodent behaviors in video.



8Discussion

This chapter concludes the thesis. We summarize the main contributions
and insights from our �ndings in Section 8.1, followed by a discussion of
our work in Section 8.2 where we highlight achievements and limitations.
We will give directions for future work in Section 8.3 and close with �nal
remarks in Section 8.4.

8.1 Summary of Contributions

We investigated the automated annotation of rat social interaction videos
in a systematic manner. We examined several aspects of automated an-
notation including tracking quality, feature representation, classi�cation
models, cross-dataset validation and adaptation to age.

• To enable these investigations and allow other researchers to build
on our work, we have recorded and annotated a rat social interaction
dataset (RatSI) and made the data publicly available (see http://www.

noldus.com/innovationworks/datasets/ratsi).

• In our analysis of tracking and feature quality, we identi�ed that in-
accurate rodent location tracking and pose reconstruction limit the
classi�cation accuracy of close-contact interactions. These insights
highlight the need for better tracking algorithms for multiple ro-
dents or alternatively for research into feature representations that
do not rely as much on tracking. With this limitation in mind, we
focus on the classi�cation-related challenges in absence of tracking
artifacts.

• We performed cross-dataset classi�cation experiments that revealed
the importance of an adequate validation of rodent behavior clas-
si�ers. We demonstrated that environmental and experimental fac-
tors such as the animal age can induce behavioral variations that, if
not properly addressed, can cause misclassi�cations. A possible ap-
proach to avoid misclassi�cations is to adapt the classi�er to behav-
ior variations before applying it to new data. We demonstrated this
in an example case in which we adapted the feature representation
to di�erent animal ages.
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• We introduced an interactive annotation framework that leverages
the above insights. We investigated the properties of di�erent sam-
pling and labeling strategies to predict the optimal settings for our
user study with human annotators. The framework allows users to
annotate rodent behavior videos and simultaneously train a classi-
�er with signi�cantly reduced e�orts. Study participants manually
annotated in less than half an hour enough examples to train an
accurate classi�er that propagated the annotations throughout the
remaining two hours of the videos. Interactive annotation enables
neuroscientists and biologists to analyze behavioral data faster than
before and allows them to study previous data in new light with lim-
ited manual work.

8.2 Discussion of our Findings

In this section we place our contributions in the context of related work
and discuss the limitations of our approach. We group the discussion into
four topics: observation, classi�cation, cross-dataset application and inter-
active annotation.

8.2.1 Observation

We analyzed the role of tracking and feature quality in classifying rat so-
cial interactions. We found that both accurate tracking and a rich pose de-
scription are necessary for accurate interaction classi�cation (Section 5.4).
In particular, tracking errors cause misclassi�cations and can render pose
features unreliable and hence less useful for classi�cation. Although tra-
jectory features such as velocity and distance are informative for many
social interactions, they do not enable the classi�cation of �ne-grained,
close-contact interactions such as nape attacking. For these, highly accu-
rate tracking of body parts such as paws is needed, which is not yet possible
with current tracking techniques. This stresses the importance of improv-
ing identi�cation of body parts in the future.

Our analyses sketch the scope of interactions that can be annotated au-
tomatically and reliably with our current tracking method. Although the
di�erent contact interactions may not yet be annotated automatically, it
is still possible to separate them from other non-contact interactions. This
separation enables the human annotator to provide the detailed annota-
tions manually while focusing on only the relevant subset of the videos.
This reduces both annotation time and the risk of missing relevant inter-
actions.
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Clearly, the goal of future work on tracking and pose reconstruction is
to enable the automated annotation of contact interactions. Recent work
has shown the potential of 3D pose reconstruction from multiple view-
points [128] or by using depth cameras [55, 87] (Section 2.2.1.4). These
advances promise not only to make tracking of multiple rodents more ro-
bust to occlusion but also to allow for a richer description of the posture,
perhaps even including the location of the paws. The main limitations for
applying these systems in practice concern the high storage and process-
ing demands, as well as the increased complexity of the setup which often
requires technical expertise.

8.2.2 Classi�cation

Besides tracking quality, there are other reasons for classi�cation errors
and confusion of behaviors. For instance, a large distance is a valuable cue
for solitary activities, but the opposite is not always true. Animals that
are in close proximity do not necessarily engage in interactions. They may
individually explore the same area of the cage. Similarly, incidental move-
ment towards or away from each other can confuse the classi�er. In such
cases, the animals indeed come closer or move away but they do not ac-
tively and seemingly intentionally approach or avoid each other. A human
annotator is able to interpret the intention in such examples and labels
them accordingly. On the one hand, the learned classi�cation models are
precise and objective: when an animal moves closer to another with a cer-
tain speed, it visually appears to approach the other. On the other hand,
the classi�er fails to reason about the intention of the animal which is not
moving closer to engage the other animal in some interaction. Such rea-
soning capabilities are desired but di�cult to facilitate in a frame-based
classi�cation model. Temporal context is not taken into account in a vari-
able manner and over an extended period of time, and start and end states
cannot be incorporated explicitly. We will suggest a possible approach to
higher level reasoning in Section 8.3.

8.2.3 Cross-dataset Application

Regarding automatically annotating rodent social behavior, one of two sce-
narios can be encountered in practice, namely: there is a pre-trained clas-
si�er available for the behaviors of interest, or there is no such classi�er. If
there is a classi�er and it is applicable to the present experiment setting, no
manual e�ort is required for annotating the videos. Whether a classi�er is
applicable in a certain setting depends on a range of factors including the
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original training set, the behavior variations therein, as well as the cage
size, the animal’s age or genetic background.

Because of the variety of these factors, it is di�cult to predict whether
newly acquired recordings are suitable to be annotated by an existing clas-
si�er. We have demonstrated in Chapter 6 that even varying only a single
aspect, namely the age of the rats, can cause a signi�cant decline in an-
notation quality. This insight has a direct impact on longitudinal behavior
studies in which the animals are repeatedly observed at di�erent points in
their life.

We therefore argue for validating classi�ers by appropriate cross-dataset
experiments. This has rarely been done in a systematic way in previous
work. Besides avoiding biased annotations in practice, identifying a bias
allows us to attend to it properly. We may improve the annotation method
so as to deal with the variations systematically or adapt either classi�cation
model or feature representation to the present settings in a one-time e�ort.
For instance, in our experiment in Section 6.2 we were able to compensate
for the age di�erence by normalizing feature values to a common range
across ages. This is a promising result that demonstrates the potential to
extend trained classi�ers to new settings and behavior variations. More-
over, being able to join data from various settings increases the amount
of available training data, which in turn makes the classi�cation models
more robust.

The challenge for adapting classi�ers to di�erent experimental settings
is that it is based on low-level features such as velocity and distance. These
depend to a large degree on the acquisition setup, the viewpoint, the size
of the animals and the cage. Given the large number of possible combi-
nations, it is not clear how adaptation should be approached in general.
There are many open questions, such as whether it is better to adapt the
classi�er to the data or vice versa, and whether labeled examples from
the new recordings are needed to inform and validate the adaptation. It
is also uncertain what the limits of adaptation are and how many factors
may change simultaneously before it becomes infeasible. Studying these
questions in future research will improve adaptation for rodent behavior
recognition and related pattern recognition problems. Furthermore, it will
advance our understanding of the factors that are responsible for natural
and induced behavior variations in rodents.

8.2.4 Interactive Annotation

In the case that no classi�er is available or existing classi�ers prove unsuit-
able, we are left with obtaining annotations manually. For this scenario we
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have presented an interactive annotation framework that allows annotat-
ing large sets of behavior videos and simultaneously learn a classi�cation
model with signi�cantly reduced manual e�ort. Our framework trains the
classi�cation model with examples that the user labels one-by-one. Being
included in the training procedure, the user can continue labeling exam-
ples until the classi�er has reached a su�cient accuracy. Manual labeling
is then stopped and the remaining videos are annotated automatically. As
a result, all videos are annotated and a new classi�er has been trained that
can be used to annotate even more rodent data. In user experiments, we
have demonstrated that users are able to train an accurate rat interaction
classi�er by labeling 300 clips of one second, which took on average less
than thirty minutes (Section 7.3).

We evaluated several sample selection algorithms that decide which yet
unlabeled video clips may be worth labeling. We compared algorithms
that attempt to balance the selection among behaviors and prefer clips
about which the classi�er is yet uncertain. These selection strategies im-
prove learning performance slightly compared to random selection but are
not able to reduce the labeling e�ort substantially. Other sample selection
strategies could be more successful [47, 116]. The largest reduction of man-
ual e�ort that we achieved stems from the ability to select samples from
anywhere in the videos and to stop labeling once the accuracy is su�cient
(Section 7.2).

One detail that our framework still misses is the monitoring of the con-
vergence of the classi�cation performance. In our experiments we retained
a set of two already annotated videos for the monitoring task. These are
usually not available in practice. Hence, we need a di�erent solution to
enable the user to assess the current performance. One option would be
to assign a few of the user-labeled clips as test samples and evaluate the
performance on those. However, this test set would not be independent as
it is selected by the algorithm based on some information criterion. The
resulting performance measure would be biased. The same problem arises
when the monitoring is based on the convergence of the training error.
Alternatively, the framework could regularly select random clips that the
user labels purely for evaluation purposes. This increases the labeling ef-
fort for the human. At last, evaluation could simply be left to the user who
makes a qualitative assessment of the annotations (as in [61]).

The proposed framework addresses one speci�c aspect of the annota-
tion task, namely the classi�cation. We have therefore assumed that the
features needed for classi�cation are readily provided. A logical extension
is to involve both feature design and classi�cation in the interactive frame-
work. A simple extension, as implemented in the JAABA framework [61],
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would provide the user a list of possible features to choose from. Making
a suitable choice requires a certain amount of experience with computer
vision and presumably involves some trial and error. Additionally, if clas-
si�cation fails, it is unclear to the user whether the number of labeled ex-
amples is insu�cient or the choice of features inadequate.

Selecting suitable features automatically could circumvent this issue. For
example, Crispim-Junior et al. [29] select features based on the distribution
of their values to ensure they di�er signi�cantly among the four considered
solitary behaviors. The method is applied in a supervised learning setting
and it is uncertain whether it works in an active learning framework where
the number of labeled training examples is limited. A semi-supervised ap-
proach may be better suited as the large set of unlabeled data can be en-
riched with a few labeled examples. Inspiration could come from work on
text categorization [107, 126] where users label not only examples but also
relevant features.

In the bigger picture, our approach to measure behavior using interac-
tive labeling does not excuse us from meticulously de�ning the relevant
behavior categories. As long as the annotator labels the behaviors consis-
tently, the classi�er will learn to consistently annotate accordingly. In other
words, if two annotators use our framework to annotate the same set of
videos but use di�erent interpretations of the behavior de�nitions, the re-
sulting annotations may still exhibit disagreement. We have observed this
e�ect in our user study (Section 7.3.3): the participants appeared to agree
more with the annotator of the YR dataset than of the RatSI dataset, leading
to a higher accuracy of the respective classi�ers for YR. Our approach can
improve the intra-annotation agreement, as the classi�er produces consis-
tent annotations based on the user input, but it has no e�ect on the inter-
annotator agreement. This restriction is a general concern of measuring
behavior based on human-de�ned categories and therefore constrains any
automated method that learns from user-labeled data.

Finally, we want to brie�y re�ect on our long-term goal of a general, uni-
�ed framework for rodent interaction recognition across settings and be-
haviors. Since it is di�cult to prove the generality of our approach, we can-
not provide hard evidence on how much our work contributes to this goal.
Although our intention is to draw general conclusions from our experi-
ments, our work is not free of assumptions. Assumptions are sometimes
made explicitly by limiting the scope and complexity of experiments, and
sometimes implicitly by deciding to work with one of the few available da-
tasets. We sought to show that our insights indeed generalize beyond the
considered scope, for instance, by validating the interactive framework on
other rodent behavior datasets such as CRIM13 and YR.
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8.3 Future Directions

We have presented our work on rodent interaction recognition with which
we have gained valuable insights into the aspects that play a role in under-
standing rodent social behavior. Our interactive annotation framework fa-
cilitates the research of neuroscientists and biologists who seek to advance
our knowledge of neurological disorders and animal behavior in general.
In this section, we address future challenges and discuss extensions to our
approach that could make it available to a wider range of applications. We
speci�cally address feature representation and reasoning about behavior.

The requirement of our framework that suitable features are provided
limits its applicability to scenarios in which we know what suitable fea-
tures are. The aforementioned approach to automatically select features
implies that there is a list of features to choose from. For rodent behavior
recognition, it seems infeasible to design such a list that captures every pos-
sible aspect of appearance and motion for multiple animals. Hence feature
selection may not be the right direction to pursue. Instead we rather want
to learn suitable feature representations from behavior data. This leads us
to end-to-end frameworks in which both features and classi�cation are
learned jointly using a complex, non-linear model.

Since they have proven successful in other visual inference tasks such
as object detection and human action recognition, end-to-end frameworks
have also received attention in the domain of rodent behavior recogni-
tion [69, 108]. The work focuses on analyzing individual rodent behavior
and seeks to circumvent the di�cult tracking problem by directly feeding
the video images to a convolutional neural network (CNN). The networks
are pre-trained using training images for an object detection task and then
�ne-tuned with rodent video images. It is yet unclear what these networks
learn about rodent behavior and whether they extend to more �ne-grained
behaviors and interactions. The results, for example, show that a network
based on single images outperforms a network that encodes motion [108].
This seems unintuitive as static appearance extracted from a single image
certainly lacks relevant information about the rodent’s motion.

A critical question to address in the future is whether the network archi-
tectures used in work on object detection are suitable for rodent behavior.
Most popular architectures are developed for human made objects and nat-
ural scenes and therefore encode visual features ranging from edges and
texture to object parts such as car wheels and human eyes. Whether the
same architectures are equally adequate for laboratory environments in
which the most relevant objects are the rodents, is an open question. To
answer this question, and to be able to train these networks from scratch,
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we certainly need to devote more e�ort to creating larger databases of an-
notated rodent behavior videos from various settings than are available at
the moment.

An intermediate solution could be to �rst work with networks that are
more constrained to a speci�c task before focusing on complex, general
models. Eyjolfsdottir et al. [41] for example propose a recurrent network
that hierarchically decomposes fruit �y behavior into motion and action.
The input to the network are not raw video images but previously tracked
animal locations. This allows concentrating on the behavior representation
and avoids blending the in�uences of tracking, representation and classi�-
cation. The proposed network learns in a semi-supervised setting, that is,
only a few annotations are provided by the user. It would hence connect
seamlessly with our interactive annotation framework.

Regarding reasoning and interpretation of social behavior that would
allow us to distinguish for example between an incidental and intentional
approach, we may need to abandon frame-based classi�cation and move
toward a top-down classi�cation approach. A top-down approach seeks to
optimally segment a video into labeled behavior events.

To give an example, an approach is not only described by a decreasing
distance with some minimum velocity, but also by the distance and the
pose at the start and the proximity at the end. It is easier to de�ne approach
in terms of a starting and ending state than the transition between them.
An approach begins when an animal decides to approach another animal
which causes a distinct change in velocity, posture or orientation towards
the other animal. Eventually, the consequence of an approach is that the
animal is close to the other. Eyjolfsdottir et al. [42] apply a similar concept
to annotate the behavior of fruit �ies and mice, where features are designed
manually to capture how behavior events start, end and progress over time.

The challenging task then is to learn these intermediate behavioral
states automatically from trajectory and pose data. That such a representa-
tion may exist has been demonstrated by Drai et al. [39] who showed that
rats have at least two intrinsic states of locomotion that are manifested by
di�erent velocity modes (roughly: lingering and intentionally changing
position). In their work, these states are learned from trajectory data
without supervision. Similar ideas are followed by Berman et al. [12] and
Wiltschko et al. [149] who decompose trajectory and pose data from fruit
�ies and mice, respectively, into smaller recurring behavioral units. They
show that these units, as they evolve over time, follow a speci�c grammar
which we eventually observe as behavior. An open question is whether
these units can also model interactions between animals.
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Suppose we �nd such an intermediate representation of interactions.
Reasoning about interactions in that representation could not only im-
prove classi�cation, it would also decouple classi�cation from low-level
features and therefore from the speci�c acquisition environment. This can
make classi�cation independent of how features are generated and from
what type of input data. The input data could be the locations of the an-
imals but also the raw video images from which features are extracted
using a CNN. This independence would allow us to transfer or adapt clas-
si�ers more easily to other environments, genetic strains and perhaps even
species.

8.4 Conclusion

Automated annotation of rodent social behavior videos involves various
tasks including locating the animals, estimating pose and motion, classi-
fying actions and eventually validating the annotations. In this thesis, we
have related each of these tasks to the quality of the automated annotations.
We analyzed previously known challenges such as the di�cult tracking in
contact situations and discovered new challenges such as behavior varia-
tions in cross-dataset applications. We thereby broadened our understand-
ing of the prevailing issues of rodent interaction recognition, which helps
to shape future research e�orts.

Perhaps the strongest motivation to automate the annotation process is
to reduce the manual e�ort for the human observer. We have achieved a
signi�cant reduction of the labeling e�ort with our interactive annotation
framework. The framework enables neuroscientists and biologists to anno-
tate behavioral data quicker than ever before, to analyze previous data in
new light and eventually to advance our knowledge of rodent behavior in
general. Our work therefore contributes to the goals of the three Rs [118] –
Replacement, Reduction and Re�nement – in that it re�nes behavior mea-
surements to be more consistent and more e�cient. The latter can reduce
the number of animals because previous experiments can be reanalyzed
when a new hypothesis emerges with a modi�ed behavior repertoire.

An important challenge to address in the future is the extension of an-
notation methods to a wider range of behaviors and experiment settings.
In order to reduce dependence on external factors such as the acquisition
setup, the speci�c animal population and the experiment protocol, we need
to progress toward a uni�ed framework that reasons about behavior on a
more abstract level than low-level velocity and distance features. A uni-
�ed framework would be more versatile and more reliable than current
methods and can lift automated behavior analysis to the next level.





Samenvatting in het Nederlands

Het meten van sociaal gedrag van knaagdieren is van belang binnen ver-
schillende onderzoeksvelden. In de neurowetenschap bijvoorbeeld wordt
knaagdiergedrag bestudeerd om de pathologie en de ontwikkeling van neu-
rologische aandoeningen, zoals de ziekte van Huntington, beter te begrij-
pen. Daarnaast is het belangrijk om een oog te houden op sociaal gedrag
voor het dierenwelzijn. Een tekort aan sociaal contact kan duiden op een
ongezonde leefomgeving.

Het voornaamste doel om gedrag te meten is om het te kunnen verge-
lijken. Dit kan een vergelijking zijn met een wenselijk toestand (bv. een
gezonde leefomgeving) of tussen verschillende dierpopulaties (bv. gezonde
versus zieke dieren). Hiervoor moet het gedrag objectief gekwanti�ceerd
worden, meestal door aantekeningen in een gedragsprotocol te maken.
Hierin wordt elke actie of interactie van de dieren genoteerd. Vaak wordt
ook bijgehouden hoelang de acties duren. Dit soort aantekeningen wordt
tijdens observaties in de natuur of op basis van video-opnames uit labora-
toria gemaakt.

In het algemeen is het handmatig bijhouden van een gedragsprotocol
een langdurige en soms subjectieve taak. Het duurt gewoonlijk drie tot
twaalf keer zo lang als de lengte van de video [3, 18, 145]. Daarom is het
wenselijk om ten minste een deel van dit werk te automatiseren. Naast de
tijdbesparing heeft een automatische meetmethode nog andere voordelen.
Ze is objectief, levert reproduceerbare resultaten en kan doorwerken zon-
der vermoeid te raken. De grootste uitdaging is de ontwikkeling van een
methode die, net als de mens, �exibel kan omgaan met variabele omge-
vingsfactoren. De mens heeft een waarnemings- en interpretatievermogen
die nog steeds niet volledig te vervangen zijn door een machine.

De eerste automatische meetmethoden voor knaagdiergedrag concen-
treren zich op het meten van bewegingen van individuele dieren. Door de
locatie van het dier gedurende de video te volgen, wordt informatie ver-
zameld over hun voorkeur voor bepaalde plekken, hun snelheid, de afge-
legde afstand of hoeveel tijd ze doorbrengen buiten hun schuilplaats [121,
135]. Door verbeterde beeldverwerkingstechnieken is het mogelijk gewor-
den om speci�eke acties zoals lopen en opstaan automatisch te herkennen
en ook de duur van deze acties te bepalen. Deze technieken werken goed
voor het meten van individueel gedrag maar voldoen nog niet om interac-
ties tussen dieren te herkennen.
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Het herkennen van sociale interacties brengt nieuwe uitdagingen met
zich mee. Ten eerste zijn er nu meerdere dieren wiens locaties gevolgd moe-
ten worden. Vaak zijn de dieren van dezelfde genetische afkomst, waardoor
ze erg op elkaar lijken en snel verwisseld worden. Hoewel dit probleem nog
niet helemaal opgelost is, hebben onderzoekers het aantal fouten door ver-
beterde technieken wel verminderd [113]. Dat geeft ons de mogelijkheid
om een nieuwe stap te maken: het automatisch herkennen van sociale in-
teracties.

Voor die herkenning is een algoritme nodig dat voor elk videobeeld be-
rekent welk gedrag de dieren op dat moment vertonen. Voor dit classi-
�catieprobleem wordt doorgaans een computatief model ontwikkeld dat
de verschillende interacties onderscheidt aan de hand van numerieke ken-
merken. Deze kenmerken bevatten vaak informatie die is afgeleid van de
locaties van de dieren, zoals snelheden en bewegingen ten opzichte van el-
kaar. Ze kunnen echter ook direct uit het beeld worden opgemaakt, zoals
de lichaamsvorm en -houding. Voordat het model gedrag kan onderschei-
den, moet het aan de hand van voorbeelden leren hoe de verschillende
interacties eruitzien.

In dit proefschrift presenteren we ons onderzoek naar automatische her-
kenning van sociaal gedrag tussen knaagdieren in video’s. Ons doel is een
methode te ontwikkelen die interactief, samen met de gebruiker, aanteke-
ningen maakt van interacties in video’s en tegelijkertijd een classi�catie-
model leert. Zodra het model genoeg heeft geleerd, kan het de resterende
video’s verwerken en alle interacties markeren. Daarvoor richten we onze
aandacht eerst op een aantal aspecten van automatische gedragsherken-
ning.

Om te beginnen introduceren we een nieuwe dataset (RatSI) die ons in
staat stelt om sociaal gedrag van ratten te bestuderen (Hoofdstuk 3). Deze
dataset bestaat uit negen video’s met een totale lengte van 135 minuten.
Alle video’s zijn volledig geannoteerd door een bioloog. Daardoor zijn ze
geschikt om classi�catiemodellen te trainen en te evalueren. We hebben
RatSI vrij beschikbaar gemaakt voor andere onderzoekers op http://www.

noldus.com/innovationworks/datasets/ratsi.
Automatische herkenning is een complex probleem met meerdere fa-

cetten die onze aandacht vragen. In Hoofdstuk 4 analyseren we deze en
identi�ceren we een aantal uitdagingen. Het classi�catiemodel moet reke-
ning houden met het feit dat de verschillende interacties met afwijkende
frequenties optreden. Dit kan negatieve gevolgen hebben voor het resul-
taat, omdat zeldzaam gedrag minder voorbeelden oplevert om van te leren
en om aan te toetsen. Daarnaast laten de gedragscategorieën soms ruimte
voor interpretatie waardoor zelfs mensen het niet eens zijn over welke in-

http://www.noldus.com/innovationworks/datasets/ratsi
http://www.noldus.com/innovationworks/datasets/ratsi
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teractie hoelang te zien is. In Hoofdstuk 5 stellen we uiteindelijk vast dat
de moeilijke taak om meerdere, bijna identieke dieren te volgen directe
consequenties heeft voor de kwaliteit van de herkenning. In het bijzonder
als de dieren dicht bij elkaar en in contact met elkaar zijn, leidt occlusie
tot fouten in het bepalen van locatie en lichaamshouding. Deze fouten be-
perken de mogelijkheden om interacties te herkennen die tijdens direct
contact optreden (bv. paringsgedrag).

Nadat we een classi�catiemodel hebben getraind, kunnen we het toe-
passen op video’s die opgenomen zijn in een vergelijkbare omgeving. In
Hoofdstuk 6 laten we zien dat het onverwacht moeilijk kan zijn om een om-
geving constant en onveranderd te houden. Het probleem ligt in het feit dat
de omgeving niet alleen door controleerbare factoren zoals verlichting en
kooimaat beïnvloed wordt, maar ook door variaties bij de dieren zelf. Wij
experimenteren bijvoorbeeld met video’s van zowel jonge als oude ratten.
Door het verschil in leeftijd ontstaan kleine veranderingen in het gedrag,
met name in snelheid, die de nauwkeurigheid van de herkenning vermin-
deren. We adviseren daarom om aandacht te besteden aan een geschikte
cross-dataset validatie en om verder onderzoek te doen naar manieren om
met zulke variaties systematisch om te gaan.

In de praktijk is niet altijd een reeds getraind classi�catiemodel beschik-
baar. Als bijvoorbeeld de gedragscategorieën zijn veranderd of uitgebreid,
dan moet het gedragsprotocol toch handmatig worden gemaakt. In dit ge-
val willen we proberen om het handmatige werk zo gering mogelijk te
houden. We pakken dit probleem aan in Hoofdstuk 7 met een interactieve
methode waarbij mens en machine samenwerken en elkaar aanvullen. De
gebruiker begint door voorbeelden van elke interactie te annoteren. Een al-
goritme gebruikt deze voorbeelden om tegelijkertijd het classi�catiemodel
te trainen. Zodra er genoeg is geleerd, kan de herkenningsmethode het in-
vullen van het gedragsprotocol overnemen. De resterende video’s worden
automatisch verwerkt. Om de tijd mogelijk verder te verkorten experimen-
teren we met verschillende strategieën om de aandacht van de gebruiker
te richten op de meest nuttige voorbeelden.

Door de gebruiker actief bij de herkenning en annotatie van het gedrag
te betrekken, kunnen we de tijd om een gedragsprotocol te maken we-
zenlijk verkorten. De deelnemers van onze gebruikersstudie trainden een
nauwkeurig classi�catiemodel binnen een half uur. Deze was vervolgens in
staat om het gedragsprotocol automatisch in te vullen voor de resterende
twee uur van de video-opnames. Deze interactieve aanpak stelt neurowe-
tenschappers in staat om gedrag sneller te meten dan voorheen en om
bestaande data in een nieuw licht te bekijken met beperkte inspanning.
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AAppendix

Table A.1: Behavior de�nitions used in RatSI and inter-annotator agreement study.
Behavior Description
Following A following animal attempts to maintain a close distance to another an-

imal while the latter is moving. This behavior includes interactions in
which the following animal is (partly) on top of the other animal.
Chasing bouts are also scored as following. During chasing, the two ani-
mals run after each other in close contact and their path often describes
an S- or 8-like shape. A following bout starts when both animals are in
motion. The bout ends if either of the animals stops moving, the following
animal leaves the path of the other, or its velocity gets much smaller than
the velocity of the other. An approaching animal tries to get into proxim-
ity of another animal. The two animals are not in proximity yet and one
animal moves in a direct way towards the other until (near-) contact is
established.

Approaching The approached animal might be stationary or moving. However, once
both animals are in proximity and keep moving in the same direction,
this is scored as following. The approach bout starts with a clear change
of direction and/or increase of velocity towards the other animal and ends
with establishing (near-)contact or another change of direction/velocity
away from the other (aborting the approach).

Moving Away One animal is actively and quickly moving away from another animal
after being in close proximity. Its movement is directed away from the
other animal, i.e., their distance would increase, and is performed faster
than with walking speed. A moving away bout is initiated by a high accel-
eration with a movement direction away from the other animal. It ends
once the velocity decreases again or the direction is not away from the
other anymore.

Allogrooming The grooming animal has one or both front paws on the other animal and
pulls repeatedly at its fur. The head of the grooming animal often makes
nodding-like movements. Both animals remain stationary, and the front
part of the active animal can be on top of the other animal during groom-
ing. The more “aggressive” kind of allogrooming in which the groomed
animal attempts to run away but fails (the other keeps up) is not consid-
ered within this category. It will be scored as following. The start of an
allogrooming bout is marked by the �rst clear nodding of the head. The
bout ends with the separation of the animals or a clear repositioning and
the engagement in another action.

Continued on next page...
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Table A.1: Behavior de�nitions used in RatSI and inter-annotator agreement study.
Behavior Description
Nape Attacking One animal approaches or attacks the neck area of another with its front

part of the body, i.e., its paws and head. The attack can occur while both
animals are moving (e.g., from within a following bout or subsequent to
an approach bout). Most of the time a nape attack is short. It starts with a
clear approach of the neck by a short movement of the head towards the
neck of the other. This movement can be a head-turn, a leap, or a trans-
lational motion. The bout does not start earlier than a few frames before
contact (approx. 120-150 ms) and therefore does not include approaching
the other animal from a distance (this part would be scored as approach-
ing). The bout ends when the contact between head and attack point (i.e.,
the neck area) is lost or when the attacking animal engages in another
interaction like pinning, allogrooming, or following.

Pinning Pinning is one possible follow-up interaction after a nape attack. The at-
tacked animal may turn on its back. The attacker then pins the other ani-
mal to the ground by pushing it down with its forepaws or its whole body.
It actively tries to keep the other on its back. Pinning sometimes evolves
into allogrooming. Since there is no clear transition point, we give the
higher priority to allogrooming, i.e., in doubt we score it as allogrooming.
The pinning bout starts when the attacked animal starts rotating on its
back and the attacker is on top of the other. The bout ends if the attacker
moves down from the other animal or the latter rotates back on its feet.

Social Nose
Contact

One individual establishes contact or near-contact with its nose to an-
other’s body parts. Both animals remain mainly stationary during this
interaction although the active animal might move around the partner’s
body. Social nose contact comprises two forms: social sni�ng and anogen-
ital inspection. Scoring of this interaction starts not earlier than 2-3 frames
before the contact is established. That is, the approach, if occurring, is not
scored as social nose contact. Scoring ends when the contact with the nose
is lost (e.g., when the animal turns away).

Solitary The animals are not actively interacting or perform individual actions
such as self-grooming, rearing or exploration. The animals are allowed to
be in close proximity as long as their actions are not oriented towards the
other animal.

Other An animal actively interacts with the other animal but the interaction is
not de�ned. Examples for not de�ned interactions (that may occur in the
videos shown) are: boxing, kicking, crawling over/under each other or
wrestling.

Unknown An animal actively interacts with the other animal but the interaction is
not distinguishable. You may score “unknown” if you are uncertain which
of two de�ned behaviors you see. You may leave a comment about what
you are uncertain about in the comments �eld.
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