
Accepted Manuscript

Title: Learning to Recognize Rat Social Behavior: Novel
Dataset and Cross-Dataset Application

Author: Malte Lorbach Elisavet I. Kyriakou Ronald Poppe
Elsbeth A. van Dam Lucas P.J.J. Noldus Remco C. Veltkamp

PII: S0165-0270(17)30125-5
DOI: http://dx.doi.org/doi:10.1016/j.jneumeth.2017.05.006
Reference: NSM 7732

To appear in: Journal of Neuroscience Methods

Received date: 31-1-2017
Revised date: 4-5-2017
Accepted date: 5-5-2017

Please cite this article as: Malte Lorbach, Elisavet I. Kyriakou, Ronald Poppe, Elsbeth
A. van Dam, Lucas P.J.J. Noldus, Remco C. Veltkamp, Learning to Recognize Rat
Social Behavior: Novel Dataset and Cross-Dataset Application, <![CDATA[Journal of
Neuroscience Methods]]> (2017), http://dx.doi.org/10.1016/j.jneumeth.2017.05.006

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

http://dx.doi.org/doi:10.1016/j.jneumeth.2017.05.006
http://dx.doi.org/10.1016/j.jneumeth.2017.05.006


Page 1 of 10

Acc
ep

te
d 

M
an

us
cr

ip
tLearning to Recognize Rat Social Behavior: Novel Dataset and

Cross-Dataset Application

Malte Lorbacha,c,∗, Elisavet I. Kyriakoub,c, Ronald Poppea, Elsbeth A. van Damc, Lucas P.J.J. Noldusc,
Remco C. Veltkampa

aDepartment of Information and Computing Sciences, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The
Netherlands

bDepartment of Cognitive Neuroscience, Radboud University Medical Centre, Kapittelweg 29, 6525 EN Nijmegen, The
Netherlands

cNoldus Information Technology BV, Nieuwe Kanaal 5, 6709 PA Wageningen, The Netherlands

Abstract

Background – Social behavior is an important aspect of rodent models. Automated measuring tools that make
use of video analysis and machine learning are an increasingly attractive alternative to manual annotation.
Because machine learning-based methods need to be trained, it is important that they are validated using
data from different experiment settings.
New Method – To develop and validate automated measuring tools, there is a need for annotated rodent
interaction datasets. Currently, the availability of such datasets is limited to two mouse datasets. We
introduce the first, publicly available rat social interaction dataset, RatSI.
Results – We demonstrate the practical value of the novel dataset by using it as the training set for a rat
interaction recognition method. We show that behavior variations induced by the experiment setting can
lead to reduced performance, which illustrates the importance of cross-dataset validation. Consequently, we
add a simple adaptation step to our method and improve the recognition performance.
Comparison with Existing Methods – Most existing methods are trained and evaluated in one experimental
setting, which limits the predictive power of the evaluation to that particular setting. We demonstrate that
cross-dataset experiments provide more insight in the performance of classifiers.
Conclusions – With our novel, public dataset we encourage the development and validation of automated
recognition methods. We are convinced that cross-dataset validation enhances our understanding of rodent
interactions and facilitates the development of more sophisticated recognition methods. Combining them
with adaptation techniques may enable us to apply automated recognition methods to a variety of animals
and experiment settings.
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1. Introduction

Social interaction is an important component of
psychiatric research as well as neurological testing of
animal models in behavioral neuroscience [1]. As part
of the emotional screening of a model it relates to
aspects such as anxiety, stress, play and sexual be-
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havior [2]. Moreover, abnormal social behavior can
be indicative of a psychopathology [3] and can the-
refore inform us of the onset or progression of condi-
tions such as schizophrenia [4], Huntington’s [5] and
Alzheimer’s disease [6] as well as Rett syndrome [7].
Including social behavior in rodent models therefore
increases their predictive power and value for the
transition to clinical trials and treatments for hu-
mans [3, 8].

Whether we seek to enhance our understanding of
social behavior or include it in a rodent model, we
need to objectively measure and quantify it. Tra-
ditionally, this involves annotating the interactions
among rodents in hours of either live observations
or video recordings of social interaction tests. While
this can be done manually, it is time-consuming and
subjective. Subjectivity may be reduced by a meti-
culously defined ethogram and thorough training of
the human annotators at the cost of additional work.

An attractive alternative to manual scoring are
automated measuring tools [9, 10, 11, 12]. Such
tools track the locations of the rodents in video re-
cordings and provide quantitative measures such as
the distance traveled and the time spent in proxi-
mity [13, 14, 15]. Recent advances in video analysis
have made the tracking of rodents more robust and
accurate [16, 17]. This allows us to take the next step
and consider the automated recognition of specific
interactions such as approaching and following. Alt-
hough the interaction categories that can currently
be handled automatically are not as fine-grained and
large in quantity as the categories that humans are
able to annotate, automated methods can still sup-
port manual annotation and reduce labor. For exam-
ple, by providing a first segmentation into these bro-
ader categories with high accuracy, the human effort
can be reduced to annotating fine-grained behaviors
only in the relevant video segments instead of the full
length of the video.

The automated recognition of interactions typi-
cally involves applying classification algorithms to a
quantified representation (features) of the visual in-
formation in the video [16, 18, 19, 20]. The features
are derived from the tracked animals and may in-
clude velocity and distance. In order to distinguish
between the different interactions, the parameters in

the classification algorithms are determined using la-
beled feature examples. In this training phase, the
classifier learns the similarities among the examples
and thereby creates a model of each interaction. For
instance, it may learn that whenever a rat approa-
ches another, it moves at a certain velocity while the
distance between the two decreases. It is important
how the classifier learns such models. A classifier
that simply “remembers” the feature values will not
perform well on unseen examples which have slightly
different values. Instead, it must generalize from the
empirical examples to the inherent variations of the
interaction classes.

Generally, there are two types of variation in the
examples of an interaction. First, two animals will
perform the same interaction slightly differently every
time, for instance, at a slightly different velocity or
from a different starting point. We consider this the
natural variation of an interaction. Second, there is
a systematic bias in the natural variation that de-
pends on the tested population and the environment
in which the interactions are observed. Rats from the
tested population, which is characterized by the gene-
tic background, the age and possibly the progress of
a condition or its treatment, could for example move
slower than rats from another population. The en-
vironment, which is often created by the researcher
to study specific behaviors, comprises factors such as
the available space and the presence of hiding places
or novel objects that may allow or prevent interacti-
ons to be performed in certain ways.

As a consequence, the models learned by the clas-
sifier depend on the distribution of training examples
with respect to the systematic bias. If the bias chan-
ges due to modifications to the animal population or
the environment [21], the models could lose their ef-
fectiveness.

Therefore, when we evaluate the performance of a
trained classifier, we typically use test examples that
follow the same distribution as the training examples.
Both training and test examples are usually taken
from a dataset of video recordings of one specific ex-
periment [16, 18, 19, 20, 22, 23]. That ensures that
the bias is kept constant during evaluation and that
we obtain a plausible measure of the performance.

This evaluation scheme becomes critical when we
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apply the trained classifier in practice. Beyond the
tested experiment setting, the evaluation is of limited
value as it cannot predict the classifier’s performance
in another setting. Given the difficulty of precisely re-
plicating experiment settings [24] as well as appeals
to increase experiment heterogeneity [25], we argue
for an evaluation of interaction classifiers across set-
tings and therefore across datasets. Only with cross-
dataset evaluation can we be confident about the per-
formance of the classifier in practice [26] and judge
to which settings we can apply it without retraining.

We argue that there is a need for datasets for at
least two purposes: to train classifiers and to eva-
luate them across experiment settings. Currently,
there are only two rodent social behavior datasets
publicly available for researchers and both focus on
mice: the Caltech Resident-Intruder Mouse dataset
(CRIM13) [19] and the Mice Behavior Analysis da-
taset (MBADA) [20].

Given the increasing interest in rats for studying
social behavior [7, 27], we introduce the first rat social
interaction dataset (RatSI)1. It contains 2.25 hours
of annotated video recordings of two interacting rats
in an open-field arena, including accurate 3-point
tracking of the animals. The dataset can be used to
develop novel interaction classifiers and to validate
existing ones.

To demonstrate the practical value of the dataset,
we use it to train a basic classifier for rat social beha-
vior recognition. We then evaluate the trained clas-
sifier on another validation dataset. We also give an
example of how a systematic bias can influence the
classifier performance. Considering the animal age as
the bias, we investigate how we can adapt the classi-
fier so as to be applicable across datasets.

We continue the article with a description of the
RatSI dataset. In Section 3 we introduce the recog-
nition method. We present the evaluation results in
Section 4 and conclude in Section 5.

2. Materials: RatSI dataset

We compiled the dataset from videos and behavior
annotations of a study on a rat model for Spinocere-
bellar ataxia type 17 (SCA17) [28, 29].

2.1. Video acquisition

The dataset comprises nine videos of a social in-
teraction test in a controlled open-field environment
with two rats. The videos are recorded from a top-
view perspective in a 90x90 cm Noldus PhenoTyper R©

9000 cage2 with standard top unit (image resolu-
tion 704x576, 25 fps) without bedding and accesso-
ries. Each recording captures 15 minutes of interacti-
ons between different rat pairs. Figure 1 shows ex-
amples of the captured interactions.

The recorded experiments are part of a larger so-
cial interaction study adopting the following protocol.
Three days before the recordings, the rats were indivi-
dually introduced to the cage arena for twenty minu-
tes. Twenty-four hours before the test, the rats were
isolated to stimulate a desire for social interaction.
Each rat was then put in the recording cage together
with another, unfamiliar rat. The recordings started
with the introduction of the second animal.

2.2. Animals

Naive male rats, 9 months, of two genotypes were
used: SCA17 [28] (n=8) and wild-type-like (Spra-
gue Dawley, n=10). Animals were housed in pairs
under reversed day-light cycle conditions and water
and food were available ad libitum. Subjects were
housed in type IV cages according to EU welfare re-
gulations except for the 24h isolation period prior
to social testing where the animals were housed in
type III cages. Testing was performed during the
animals’ active (dark) phase. All experiments were
performed after approval of the Ethical Committee
for Animal Experiments of the Radboud University
Nijmegen Medical Center for compliance to ethical
standards and use of laboratory animals according to
EU-guidelines.

1http://www.noldus.com/innovationworks/

phenorat-dataset
2http://www.noldus.com/phenotyper
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Table 1: Description of the behavior classes, their prior probability regarding the frame count p and the number of events m
Allogrooming Grooming another rat’s fur p = 0.047 m = 105
Approaching Moving towards another rat in a straight line p = 0.075 m = 355
Following Chasing another, moving rat within a tail length distance p = 0.093 m = 259
Moving away Moving away from another rat in a straight line p = 0.044 m = 387
Nape attacking Snout or oral contact directed at neck region, possibly with biting/pulling

fur in that region
p = 0.01 m = 85

Pinning Actively restrain another rat on its back p = 0.006 m = 8
Social nose contact Non-incidental nose-body contact (e.g. inspection) p = 0.103 m = 506
Solitary Any activity not directed at another rat p = 0.586 m = 484
Other Any interaction not covered by another category p = 0.036 m = 196

Figure 1: Example frames of each behavior in RatSI dataset

2.3. Annotation of interactions

Every video frame was annotated by an expert with
one of nine interaction labels [30], described in Ta-
ble 1. The annotations are non-overlapping. Note
that the interactions occur with very different fre-
quencies which leads to a non-uniform distribution
of the prior occurrence probabilities. In particular,
the animals perform solitary behavior in the majority
(58.6%) of the frames. Such a skewed distribution is
common for behavioral datasets [19, 20].

The annotated interactions are related to either the

trajectories of the animals such as Approaching and
Following, or a contact category such as Allogroo-
ming and Nape attacking. To distinguish between
the fine-grained contact interactions automatically,
we require additional information from features other
than the animal trajectories [31], for example image
features. What features are best suited for this task
is yet an open research question [32]. To facilitate
such research we make the annotations of all inte-
ractions available online. Here we use a restricted set
of annotations in which we have merged Allogroom-
ing, Nape attacking, Pinning and Social nose contact
into one common Contact class. The Contact class
groups interactions that are not easily distinguished
by the classifier on basis of only trajectory features.
If a fine-grained categorization is required in the be-
havior analysis, the interactions classified as Contact
can be annotated manually afterwards.

2.4. Tracking and features

The animal locations and body point positions
have been tracked throughout the videos using Nol-
dus EthoVision3 XT 12 with a customized rat iden-
tification algorithm. The algorithm uses appearance
differences (here reinforced by black markers) to dis-
tinguish and maintain the identities up to a few errors
which we correct manually afterwards. Note that the
identification algorithm is still under development to
facilitate marker-less identification and is therefore
not included in the official EthoVision XT 12 ver-
sion. We track three points on the rat body: the
nose, the center of body mass, and the tail-base (see

3http://www.noldus.com/ethovision
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Fig. 2a for an illustration). Compared to tracking
only the center point, three-point tracking yields a
more detailed pose representation and improves the
recognition accuracy [15, 31, 33].

The feature set that we derive from each animal’s
trajectory is described in Figure 2. The set is based
on previous work in the field [18, 19, 22]. Static pose
information is represented by the distances between
the three body points (dcc, dnn, dnt), the head orien-
tation in relation to the other rat’s position (γ), and
the relative orientation of the pair (ϕ). Dynamic in-
formation is captured by two body point velocities
(vc, vn) as well as the change of distance and orien-
tation between consecutive video frames. For details
on the features we refer to Appendix A.

In the considered interactions, the two rats often
take on different roles. For example, one rat ap-
proaches while the other is being approached. This
asymmetry is information that the classifier cannot
use because the role is unknown beforehand and thus
not encoded in the features. In fact, the order of
the rats in the feature vector is arbitrary (i.e., first
features of rat A, then of rat B or vice versa). To
make the classifier invariant to the order, we aggre-
gate the features across animals. We take the mini-

Tail-base

Center Nose

(a)

d/dt Unify Description
dcc x - Distance between center points
dnn x - Distance between nose points
dnt x x Distance between nose and tail
vc - x Center point velocity
vn - x Nose point velocity
cos(γ) x x Relative position
|ϕ| x - Relative orientation

(b)

Figure 2: Features extracted from tracked body points. Asym-
metric features are unified to one common value per rat pair.

mum, the maximum and the absolute difference of
all features except those that are already invariant to
the order (center and nose point distances and the
relative orientation). The final feature vector of one
frame has 24 elements.

As the final step we reduce feature noise that may
have been introduced during the tracking and propa-
gated through above computations. We smooth the
sequence of feature values over time using a moving
average over five surrounding frames (two before and
two after).

3. Method: Rat interaction recognition

We now turn to the recognition method and its
evaluation in a cross-dataset classification task. Our
interaction classifier models interactions as Gaussian
distributions of the features. To be able to capture
more interaction variations, we allow the classifier to
model each interaction using multiple Gaussian dis-
tributions. The distributions are combined in Gaus-
sian Mixture Models (GMM).

During the training phase, the classifier determines
the parameters of the models using the Expectation
Maximization algorithm [34]. This yields a set of n
model parameters {θ1, . . . , θn} per interaction class.
In addition to the parameters of the Gaussian distri-
butions, we need to determine the number of distri-
butions in each mixture model and an optional con-
straint that constrains the covariance matrices of the
Gaussians to be diagonal. The latter simplifies the
models and decreases the time needed for training.
We find the settings that yield the highest accuracy
automatically using cross-validation.

To predict the discrete interaction label ŷ of a fea-
ture vector x extracted from an unseen video frame,
the classifier computes the probability of the data
point given the model parameters for each class, θi,
and returns the class with the highest probability:

ŷ = argmax
i
p (x|θi) . (1)

Note that we intentionally neglect the information of
how often a particular interaction has occurred du-
ring training (the prior probability) to prevent bia-
sed predictions in test sets with different interaction
occurrence ratios.

5
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3.1. Validation dataset

The evaluation of our recognition method is perfor-
med on another Validation dataset. The Validation
set is similar to RatSI as it also contains videos from
an open-field social interaction test and the same in-
teractions are annotated by an expert [30]. The expe-
riments however were performed in a different labo-
ratory. The rats are also younger (5 weeks instead of
9 months) and thus smaller, quicker and they engage
frequently in dynamic playing interactions. The Vali-
dation set contains 400 annotated segments from five
videos (50 per interaction class) with a total duration
of 12.5 min. The interactions occur with different fre-
quencies and durations than in RatSI. The locations
of the rats were tracked with Noldus EthoVision XT
11. Tracking and identity errors were corrected ma-
nually.

Animals. One group of ten naive wild-type-like
(Sprague Dawley) males, 5 weeks, were used in an
social interaction test with the same protocol as des-
cribed in Section 2.1. The experiments were perfor-
med in adherence to the legal requirements of Dutch
legislation on laboratory animals (WOD/Dutch “Ex-
periments on Animals Act”) and were reviewed and
approved by an Animal Ethics Committee (“Lely-
DEC”).

3.2. Experiments

We perform three experiments to evaluate three
aspects of our interaction classifier. First, we as-
sess whether the classifier is able to recognize in-
teractions in the same experiment setting as it has
been trained on (Within-data). Second, we assess
whether the classifier generalizes to other settings by
evaluating its performance on the Validation data-
set (Cross-dataset). Third, we examine whether we
can neutralize the differences between the two expe-
riment settings by adapting the distribution of the
feature values (Adaptation). We use the restricted
annotation set for our experiments.

Within-dataset. The within-dataset evaluation is
performed in a 3-fold cross-validation scheme. That
is, we split the dataset into three parts (three videos
each) and then train the classifier on two parts and

measure its performance on the remaining part. This
is repeated such that we evaluate the performance on
all three parts once. We automatically determine the
best classifier settings by performing a cross-validated
model selection on the two training parts (with four
training videos, two test videos and three repetiti-
ons).

Cross-dataset. For the cross-dataset validation, we
determine the GMM settings and train the classifier
using the same 3-fold cross-validated model selection
scheme. Since the performance is now evaluated on
the Validation dataset, we use all RatSI videos for
training.

Adaptation. To examine whether some of the diffe-
rences in the experiment settings can be neutralized,
we aim to remove the systematic bias (as introduced
in Section 1) from the feature values.

We employ a simple technique that scales the va-
lues of each feature such that the fifth-percentile va-
lue is -1 and the 95th-percentile value is 1. Using
the percentiles instead of the minimum and maxi-
mum values increases the tolerance against outliers
and skewed class priors. After independently scaling
the training and Validation sets, we repeat the cross-
dataset experiment.

To illustrate how training sets with different pro-
perties (e.g. experiment setting, number of examples)
can affect the performance, we repeat all three expe-
riments in reverse order, i.e., using the Validation set
for training, and RatSI for validation.

3.2.1. Performance metric

The performance is measured per class by the F1-
score. The F1-score is the harmonic mean of the
precision (true positive predictions divided by total
number of positive predictions) and recall scores (true
positive predictions divided by the number of actual
occurrences). The class scores range from 0, with no
correct predictions, to 1 for the correct prediction of
all examples. To obtain a single measure of perfor-
mance for the classifier, we average the F1-scores over
all interaction classes leading to a final score in the
range from 0 to 1. Averaging over classes as opposed

6
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to the total number of frames (equivalent to the ra-
tio of correct frames) assigns equal importance to all
interaction classes and prevents the score from being
biased by the most-occurring interactions. Hence it is
better suited for behavior datasets with interactions
that occur with different frequencies.

4. Results

We report the performance of our interaction re-
cognition method in Figure 3. In the within-dataset
experiment, we achieve a F1-score of 0.52 (±0.03) on
RatSI and 0.68 (±0.06) on Validation. When trai-
ned on RatSI and evaluated on Validation, the level
of accuracy is maintained (0.69). After adapting the
features, the score even slightly improves to 0.72.

In reversed training direction (Validation →
RatSI), the F1-score of 0.52 drops by 11.5% to 0.46 in
the cross-dataset experiment. The drop is compensa-
ted fully by applying the feature adaptation (0.54).

RatSI Validation
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Av
g.

 F
1-

sc
or

e 
pe

r c
la

ss

within-dataset cross-dataset adaptation

Figure 3: Recognition performance (average F1-score) with s.e.
for cross-validated within-dataset experiment

The results show that RatSI is a suitable dataset
for training social interaction classifiers. The score
achieved on the Validation set (0.69) is in the same
order as reported in related work on similar data-
sets [19, 20, 22]. Note the relatively low performance
for Moving away of 0.26 (see Table 2) which is partly
caused by confusions with the Solitary class. These
occur because incidental movements away from anot-
her animal are typically classified as Moving away,

Table 2: Per interaction recognition performance for within-
dataset (w), cross-dataset (c) and adaptation (a) experiments

RatSI Validation
Class w c a w c a
Approaching 0.43 0.35 0.41 0.61 0.59 0.62
Contact 0.58 0.57 0.65 0.94 0.95 0.96
Following 0.53 0.25 0.51 0.58 0.66 0.66
Moving away 0.26 0.24 0.24 0.44 0.49 0.53
Solitary 0.80 0.87 0.86 0.84 0.77 0.84

whereas the human annotator only decided for Mo-
ving away if the event succeeded another interaction
such as Contact. Our frame-based classifier does not
take such context information into account yet.

While the classifier trained on RatSI generalizes
well to Validation, training on the Validation dataset
is not optimal as is evident from the declined per-
formance on RatSI. This illustrates the necessity to
validate classifiers on other datasets. The decline in
accuracy is presumably caused by the limited size of
the Validation set (12.5 min compared to 135 min in
RatSI). It further contains interaction variations that
are more specific to young rats such as Following at
high velocity. The high velocity does not translate
well to the older, slower rats in RatSI, leading to
a biased classifier and consequently to a decreased
accuracy for Following : from 0.53 to 0.25.

A simple feature adaptation technique however is
able to compensate for this age difference and resto-
res the accuracy to the level of the classifier trained
on the same dataset. This is a promising result as
it demonstrates that classifiers are not necessarily
bound to one experiment setting. With more ela-
borate techniques we may be able to handle more
pronounced variations such as different species.

5. Conclusion

We introduced the first publicly available rat social
interaction dataset, RatSI. The dataset is suitable for
training rat interaction recognition methods as well
as for validating methods trained on other datasets.
The dataset can be used to study the temporal as-
pects of rat interactions and how these may improve
the recognition performance. We encourage the de-
velopment of new automated methods and the use of

7
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the presented method for comparison.
We further illustrated the importance of cross-

dataset evaluations considering the different experi-
ment settings encountered in practice. We showed
that behavior variations induced by the experiment
setting, for example the animal age and its effect on
the velocity, can lead to reduced performance.

Through the performed cross-dataset evaluation,
we were able to identify and neutralize the behavio-
ral variation from our validation dataset, and could
thus improve the classification performance. The fact
that we were able to achieve this improvement with a
simple scaling technique demonstrates the potential
of cross-dataset application of interaction classifiers.

Developing more sophisticated methods for adap-
ting to behavior variations will not only enhance our
understanding of rodent interactions, it could also
enable us to apply automated measuring tools across
species and to longitudinal studies of diseases.
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Appendix A. Trajectory Features

The features that we introduced in Section 2.4 are derived
from the tracked body point locations over time. Each feature
is computed for every frame of a given video. We enumerate
the animals and indicate the identity in a subscript together
with specific body point (c for center point, n for nose point,
t for tail-base point). For example, the center point of rat 1
measured in frame t is ~p1,c(t). For the sake of clarity we omit
the frame identifier (t) unless it is necessary to distinguish
between values of different frames.

Appendix A.1. Distance
We measure three distances between the two animals, na-

mely between the center points, between the nose points, and
between the nose point and the tail-base point. All distances
are Euclidean distances, indicated by ||·||2.

dcc = ||~p1,c − ~p2,c||2 (A.1)

dnn = ||~p1,n − ~p2,n||2 (A.2)

dnt = ||~p1,n − ~p2,t||2 (A.3)

Appendix A.2. Velocity
The velocities of the center and the nose points are esti-

mated by the positional difference between two consecutive
frames. To standardize velocity across different video frame
rates, we divide by the time interval covered by the two fra-
mes: δ = 1/fps, where fps is the video frame rate:

vc(t) = ||~pc(t)− ~pc(t− 1)||2 /δ (A.4)

vn(t) = ||~pn(t)− ~pn(t− 1)||2 /δ. (A.5)

Appendix A.3. Relative orientation
We measure the relative orientation between the rats as the

angle between their head directions. The head vector of rat j
is ~pj,cn, j ∈ {1, 2}, pointing from the center point to the nose
point. The relative orientation is the absolute angle between
the head vectors of the two rats:

ϕ = | 6 (~p1,cn, ~p2,cn)| . (A.6)

Appendix A.4. Relative position
The relative position captures where in an animals envi-

ronment the other animal is (e.g., in front, behind, next to).
We designed this feature to be invariant to the distance be-
tween the animals and to be symmetric with respect to the
side (left/right). It is calculated as cos γ, where γ is the angle
between the animal’s head vector ~pj,cn and the line connecting

both animals’ center points ~dcc as illustrated in Figure A.4.

Figure A.4: The relative position of one rat with respect to
the head orientation of the other
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